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ABSTRACT

Cellular  systems  specification  is  an  important  
research  topic  as  it  allows  modeling  structure  
and  behavior  of  many  real- world  systems.   We 
use  meta - modeling,  model- transformation,  and  
the  Discrete- EVent  system  Specification  (DEVS), 
for  the  automatic  construction  and  simulation  of  
cellular  models.  Our  focus  here  is  on  the  
generation  of  those  models  through  graphical  
means  (using  meta - modeling  and  model-
transformation  concepts),  rather  than  on  their  
efficient  simulation.  Through  the  presented  
framework,  complexity  of  systems  can  be  
adaptively  and  precisely  tackled.  

Keywords:  Cellular  models,  Meta- modeling,  
graph- transformation,  DEVS, AToM3.

1 INTRODUCTION

A  cellular  system  consists  of  a  spatial  
arrangement  of  interacting  sub- systems.  Local  
interactions  and  behaviors  of  sub- systems  lead  
to  global  behavior  due  to  their  influence  on  the  
state  of  neighboring  sub- systems.  At  a  
specification  level,  these  local  interactions  and  
behaviors  are  given  once  for  diverse  zones  and  
replicated  subsequently  throughout  the  whole  
system.

To  specify  certain  classes  of  cellular  systems,  
modelers  can  benefit  from  a  generic,  simple  and  
easily  modifiable  high- level  visual  specification  
of  both  cellular  topology  (including  sub- system  

interconnections)  and  sub- system  behaviors.  If 
the  visual  notations  are  sufficiently  non- technical  
and  possibly  domain- specific,  it  becomes  
possible  for  domain - specialists  in  different  
disciplines  to  model  cellular  systems.  
Furthermore,  if  a  graphical  or  semi- graphical  
mechanism  is  provided  to  automatically  
transform  such  visual  specifications  into  
simulation  code,  the  modeler  obtains  three  
benefits:  first,  the  generated  code  is  guaranteed  
to  be  robust  (whereas  manually  developing  the  
code  requires  verification);  second,  the  entire  
process  from  visual  specifications  to  generated  
code  is  in  the  form  of  explicit  model  
transformations,  which  can  be  modified  with  
little  programming  involved  in  order  to  yield  
variations  of  the  cellular  systems;  and  third,  such  
transformations  constitute  a  precise  
documentation  of  the  process.

To  faithfully  and  efficiently  model  and  simulate  
complex,  spatially  distributed  systems  such  as  
cellular  systems,  an  appropriate  formalism  has  to  
be  defined.  

Visual  (yet  rigorously  defined)  languages  can  
provide  an  intuitive  and  explicit  means  for  
specifying  cellular  models.  Meta- modeling  can  be  
used  [1,  16]  to  quickly  design  and  modify  such  
languages.  Subsequently,  according  to  the  
system’s  specification,  the  mapping  between  the  
model  and  a  simulate - able  representation  needs  
to  be  specified.  Such  specification  may  be  done  in  
the  form  of  graph  grammars  or  by  means  of  
direct  code- generation.



The  Discrete - EVent  system  Specification  (DEVS) 
[22]  is  a  formalism  used  to  describe  complex  
discrete - event  systems  in  a  modular  fashion.  
This  paper  describes  an  approach  to  the  
specification  of  cellular  DEVS  models  from  a 
graphical  description  level,  which  the  automatic  
generation  of  suitable  representations  that  can  be  
given  as  input  to  discrete - event  simulators.  The  
discrete - event  simulator  used  here  for  validation  
is  PyDEVS [3].

The  rest  of  this  paper  is  organized  as  follows.  In  
the  next  section  the  state - of- the- art  of  meta -
modeling,  model- transformation,  cellular  
systems  and  discrete - event  modeling  and  
simulation  is  presented.  In  Section  3,  the  cellular  
framework  is  described  and  in  Section  4,  the  
whole  approach  is  validated  through  an  
application  to  the  Conway’s  game  of  life.  
Conclusions  and  discussions  of  this  research,  
including  future  research  directions,  are  given  in  
Section  5.

2 STATE OF THE ART

Meta- modeling  and  graph- transformation  can  be  
used  to  describe  cellular  systems  formalisms  in  
terms  of  discrete - event  modeling  and  simulation  
concepts.  Note  that  from  such  descriptions,  
interactive,  visual  modelling  environments  can  be  
synthesized.  In  the  sequel,  these  concepts  and  
relations  between  them  are  identified.

2.1 Meta- modeling  and  model  transformation

Meta- modeling  is  the  process  of  modeling   the  
syntax  of  models  in  a  formalism  by  means  of  a  
meta - model,  in  an  appropriate  meta - modeling  
formalism.  As such,  it  is  sometimes  referred  to  as  
a  grammar.  For  example,  to  specify  the  general  
structure  of  Petri  Net  models,  one  can  use  models  
in  a  formalism  such  as  UML Class  Diagrams  [14] 
or  Entity- Relationship  (ER) diagrams  [4].

One  of  the  advantages  of  meta - modeling  is  that  
for  many  useful  formalisms,  models  and  meta-
models  can  be  represented  in  a  visual,  intuitive  
way.  Furthermore,  a  graphical  representation  of  
models  allows  the  explicitly  modeling  of  
operations  such  as  model  analysis  and  code  
generation  by  means  of  graph- transformation , 
using  graph- grammars  [5]. 

A  graph- grammar  is  the  generalization  of  term  
rewriting  systems  to  the  domain  of  graphs.  A 
graph- grammar  consists  of  a  set  of  rules  of  the  
form  L=>  R,  where  L and  R are  graphs  (called  

LHS for  “Left  Hand  Side”  and  RHS for  “Right  Hand  
Side”  respectively.)  Such  a  rule  represents  the  
action  of  replacing  the  sub- graph  L by  R in  a 
given  host  graph . A rule  can  be  applied  to  a  host  
graph  only  if  its  LHS occurs  in  the  host  graph.  
Sometimes  the  rules  have  an  additional  condition  
and  an  action.  In  such  case,  the  condition  must  
be  satisfied  for  the  rule  to  be  applicable,  and  the  
action  represents  some  side- effect.  Furthermore,  
it  is  common  for  nodes  and  arcs  in  a  graph  to  
have  attributes.  In  the  context  of  a  graph-
grammar,  the  attributes  of  the  LHS  must  be  
matched  by  the  relevant  sub- graph  in  the  host  
graph  in  order  for  a  rule  to  be  applicable.  
Informally,  given  a  host  graph  and  a  graph-
grammar,  all  the  rules  in  the  grammar  will  be  
applied  until  no  more  rules  can  be  applied.  A 
graph- rewriting  engine  is  an  algorithm  
implementing  such  a procedure.

Combining  meta - modeling  and  graph  rewriting  
enables  us  to  develop  modeling  environments  
with  relative  ease  and  with  little  programming  
involved,  as  the  process  is  done  at  the  level  of  
modeling.  For  this  project  we  have  used  AToM³  
[7], a tool  that  combines  the  two  techniques.

By  using  meta - modeling  we  can  describe  (the  
syntax  of) the  DEVS formalism  [13,  8], as  well  as  a  
formalism  to  specify  cellular  spaces.  From  those  
meta- models,  AToM³  automatically  generates  a  
visual  modeling  environment  in  which  we  can  
specify  both  the  local  (DEVS) behavior  of  cells,  
and  the  global  structure  of  the  cellular  space.  The  
behavior  of  atomic  DEVS components  is  given  by  
means  of  state - transition  diagrams  for  the  
modeler’s  convenience.   From  these  
specifications,  we  generate  the  actual  cellular  
DEVS model  by means  of  graph- grammars.

2.2 Cellular  systems

Cellular  Automata  (CA)  [17] is   a  well- known  
formalism  for  specifying  spatially  distributed  
phenomena.  Standard  CA  consist  of  an  infinite  
lattice  of  discrete  identical  sites,  each  site  taking  
on  a  finite  selection  of,  for  instance,  integer  
values.  The  values  of  the  sites  evolve  
synchronously  in  discrete  time  steps  according  to  
deterministic  rules  that  specify  the  value  of  each  
site  in  terms  of  the  values  of  neighboring  sites.  
CA are  models  where  space,  time  and  states  are  
discrete.  

This  definition  of  basic  CA  (infinite  lattice,  
neighborhood  and  rule  uniformity  of  the  cells,  
closure  of  the  system  to  external  events,  discrete  



states  of  the  cells,  etc.)  is  too  limited  to  specify  
complicated  cellular  models.  Scientists  often  
need  to  tailor  the  CA formalism  to  their  needs.

DEVS can  be  used  as  a  foundation  to  devise  more  
powerful  cellular  formalisms.  An  approach  to  
formally  merge  CA  and  DEVS was  presented  in  
[15]. Currently,  the  more  direct  approach  is  Cell-
DEVS  [19], which  is  implemented  in  the  CD++  
toolkit  [18].  This  cellular  formalism  is  closed  
under  coupling.  High- level  structures  allow  the  
specification  of  discrete - event  cellular  models.  
Delay  constructs  are  provided  to  deal  with  
asynchronous  time.

Lastly,  another  approach  tries  to  deal  with  the  
Dynamic  Structure  DEVS (DSDEVS) formalism  [2]: 
the  Dynamic  Structure  Cellular  Automata  
specification  [11].  The  idea  is  to  take  advantage  
of  the  Dynamic  Structure  Discrete  Time  System  
Specification  (DSDTSS)  sub- formalism  to  deal  
with  discrete - time  cellular  models.  The  DSCA 
focuses  on  discrete - time  and  dynamic  structure  
without  dealing  with  timing  issues  of  a  discrete -
event  approach.  The  latter  can  be  inefficient  to  
deal  with  large  discrete - time  cellular  models.

2.3 Modeling  and  simulation  of  discrete-
event  systems

A DEVS atomic  model  is  described  by  a  structure  
<  X, S, Y,  δint, δext , , ta  >λ .  X is  the  set  of  input  
events,  S is  the  state  set,  Y  is  the  set  of  output  
events,  δint  is  the  internal  transition  function,  
δext  is  the  external  transition  function,  λ is  the  
output  function,  and  ta  is  the  time  advance  
function.  The  transition  functions  are  triggered  
by  events,  and  they  operate  on  inputs  and  the  
state  of  the  system  when  an  event  occurs.

A  DEVS  coupled  model  is  described  by  a  
structure   <X, Y,  D, {Mi}, {Ii}, {Zij}, select> .  X is  the  
set  of  input  events,  and  Y  is  the  set  of  output  
events.  D is  an  index  of  components,  and  for  each  
i  Є D, Mi is  a  DEVS model  (atomic  or  coupled) . Ii is  
the  set  of  influencees  of  model  i. For  each  j  Є Ii, 
Z ij is  the  i to  j translation  function.   Select  is  the  
tie- breaking  function  which  sequentializes  
simultaneous  internal  transitions.

DEVS models  can  be  executed  by  a  plethora  of  
simulators.  Many  of  these  simulators  use  
different  programming  languages,  each  one  with  
its  own  strengths  and  weaknesses.

As  simulation  mechanisms  and  specifications  of  
DEVS models  can  be  difficult  to  understand  for  
non- specialists,  visual  languages  are  being  

developed.  [13,  18,  8]).  However,  to  the  best  of  
our  knowledge,  no  visual  languages  have  been  
proposed  for  the  specification  of  DEVS cellular  
models.

3 CELLULAR MODELING FRAMEWORK

As  described  in  the  previous  section,  different  
discrete - event  system  specifications  can  be  used  
at  different  abstraction  levels  (from  abstract  
mathematical  structures  to  generated  code).  At  
every  level,  choosing  the  right  formalism  allows  
one  to  focus  on  relevant  features  of  a  problem.  If 
a  modeling  formalism  is  not  well  adapted  to  a  
problem  specification,  analysis,  design  and  
verification  phases  will  not  be  efficient  (or  even  
incorrect).

To  help  modelers  to  automatically  and  efficiently  
switch  between  modeling  (re- use,  understanding,  
exchange)  and  simulation  (run- time  efficiency  
and  accuracy)  goals,  meta - modeling  and  model  
transformation  can  be  used.  

Our  main  goal  is  the  (automatic)  generation  of  
“Cellular  Spaces”  models  from  visual  
specifications.  The  basic  idea  is  that  the  modeler  
provides  a  visual  specification  of  the  behavior  of  
a  cell  (in  a  visual  notation  for  DEVS,)  and  a  
“generator”  specification  which  denotes  a  cellular  
space.  The  framework  then  produces  the  full  
cellular  space,  by  replicating  the  given  cell  model.  
This  process  is  carried  out  by  means  of  model  
transformation.  The  main  advantages  are  that:  
firstly,  the  transformation  guarantees  the  
robustness  of  the  generated  models  (as  opposed  
to  manually  coding  the  DEVS representation  of  
the  cellular  space  in  some  programming  
language),  and  secondly,  the  model  
transformations  can  by  modified  to  yield  
different  topologies  without  the  need  for  hard -
coding.

The  environment  consists  of  a  tool  to  visually  
specify  DEVS models  as  well  as  general  cellular  
spaces,  and  to  generate  appropriate  executable  
representations  of  these  models.  The  modeler  
provides  the  specification  for  a  single  cell.  Given  
this  as  well  as  the  model  representing  the  
structure  of  the  cell  space,  the  process  of  
generating  a  DEVS representation  can  be  done  in  
two  ways:  1) via  graph- transformation,  and  2) via  
direct  code- generation.

In  the  first  approach,  the  tool  generates  a 
template  of  the  cellular  space,  which  is  then  filled  
with  instances  of  the  DEVS model  specified  for  
every  individual  cell.  Once  this  is  done,  the  



environment  generates  a  code  representation  of  
the  large  cellular  DEVS  model,  which  can  be  
processed  by  a DEVS simulator.

In  the  second  approach,  a  single  class  is  
generated  for  the  DEVS model  specified  for  every  
individual  cell,  and  a  compact  representation  of  
the  coupled  DEVS model  representing  the  cell  
space  is  also  produced.

While  the  second  approach  is  better  both  in  
execution  time  and  space  complexity,  we  point  
out  that  the  first  one  is  faster  to  implement  and  
is  purely  visual,  giving  deep  insight  and  requiring  
little  programming  knowledge  as  the  whole  
process  is  done  at  the  level  of  models  rather  than  
code.  In particular,  one  of  the  main  advantages  of  
using  explicit  graph- transformations  to  generate  
the  cell  space  is  that  is  it  straight - forward  to  
change  the  topology  of  the  space,  simply  by 
changing  the  set  of  rules,  without  requiring  
explicit  coding  of  the  topological  constraints.

As an  illustration,  we first  describe  the  process  of  
generating  2D  cellular  spaces,  and  then  the  
process  of  instantiating  the  sites  in  the  cellular  
space  with  the  DEVS model  given  by the  modeler.

3.1 Specifying  cellular  spaces  visually

First  we  start  with  the  meta - model,  which  is  
illustrated  in  Figure  1 as  an  Entity- Relationship  
diagram.  The  main  entities  involved  are  the  cells,  
their  neighborhood  relations,  and  the  generator  
entity  which  is  used  to  specify  the  global  
structure  of  the  space.  There  are  two  other  
relations  called  first  and  last .  These  are  used  as  
pointers  during  the  space  generation.

Figure  1.  ER diagram  of  the  cell  space  meta-
model  

The  meta- model  describes  what  constitutes  a  
legal  cell- space.  Note  however  that  it  does  not  

specify  the  actual  topology,  it  only  describes  the  
possible  connections.  The  topology  itself  is  
generated  by a graph- grammar.

From  this  ER (meta- )model,  AToM³  generates  the  
appropriate  modeling  environment.  Hereby,  icons  
representing  the  various  entities  (Generator  and  
Cell  in  this  case)  were  modeled  using  AToM³’s  
visual  icon  editor  (a drawing  tool).

Cells  act  as  “place  holders.”  They  are  not  
interesting  in  their  own  right.  Their  sole  purpose  
is  to  be  replaced  by  instances  of  DEVS models  
and  to  provide  the  topology  of  their  
neighborhood.  The  neighborhood  relations  
explicitly  describe  such  topology.   The  role  of  the  
generator  is  dual:  to  specify  the  dimensions  (M 
rows,  N columns)  and  to  serve  as  a  guide  in  the  
generation  processed  by  the  graph- grammar.  
Figure  2  shows  a  typical  model.  The  
neighborhood  arrows  are  labeled  n ,  e,  s or  w  to  
denote  the  particular  spatial  relation  (North,  East,  
South,  and  West,  respectively,  for  a  von  Neumann  
neighborhood.)  The  generator  entity  is  the  node  
on  top  (with  a  diagonal  through  it.)  It  is  labeled  
with  the  dimensions  of  the  form  “m/M;  n/N ”. 
This  means  that  it  has  M rows,  N columns.  The  m  
and  n  are  explained  below.  

Figure  2.  A typical  cellular  model

Now  we  specify  a  graph- grammar  (GenCellSpace ) 
which  is  applied  to  a  generator  entity  and  
produces  the  template  for  the  cellular  space  with  
the  appropriate  dimensions.  In  Figure  3  (a 
through  d),  we  show  the  basic  rules  used  to  
generate  a  two- dimensional  cell- space  where  
each  cell  has  a  von  Neumann  neighborhood,  and  
with  a  finite  boundary.  Different  topologies  can  
be  generated  with  a different  set  of  rules.



           

a. Rule  ACFR                                                                                             b. Rule  ACR

                     

c. Rule  NR                                                                                         d.Rule  FC

Figure  3.  Basic  rules  used  to  generate  a two- dimensional  cell- space

The  rules  have  the  form  L  =>  R with  an  
associated  condition  C,  where  L and  R are  valid  
models  with  respect  to  the  meta- model  of  Figure  
1.

The  intuition  behind  this  graph- grammar  is  to  
generate  the  cell- space  by  constructing  one  row  
at  a  time  from  the  bottom- up,  and  each  row  is  
built  cell- by- cell  from  left  (West)  to  right  (East).

As  mentioned  above,  the  generator  node  is  
labeled  “m/M;  n/N ”  where  M and  N are  the  
dimensions.  The  m  and  n  represent  counters  to  
keep  track  of  how  many  rows  are  left  to  create  
(m ) and  how  many  cells  are  left  to  create  in  the  
current  row  (n ). 

In  these  rules,  the  arrow  labeled  f  acts  as  a  
pointer  to  the  first  cell  in  the  current  column  
being  generated,  and  the  arrow  labeled  l is  a  
pointer  to  the  last  cell  generated  in  the  current  
row.

The  first  rule  is  FC (First  Cell).  This  rule  is  
responsible  for  creating  the  first  cell.  It  adds  the  
cell  and  sets  the  f  and  l arrows  to  this  new  cell.  
Each  new  cell  is  given  its  own  new  label.

The  second  rule,  ACFR  (Add  Cell  First  Row) takes  
care  of  creating  the  first  row.  It  requires  that  
m=M- 1  to  ensure  this  is  the  first  row,  and  that  
n>0  to  ensure  this  is  not  the  last  column.  It adds  
a new  cell  to  the  right  of  the  one  pointed  by  l (the  
last  added)  and  decrements  the  column  counter  
by 1 .

The  third  rule  is  NR  (New  Row).  It  requires  m>0  
so  that  there  are  more  rows  to  add,  and  requires  
that  n=0  so  that  there  are  no  more  cells  to  add  in  
the  current  row.  It  then  creates  a  new  cell  adding  
the  n  and  s arrows,  and  moves  both  f  and  l 
arrows  to  point  to  this  new  cell.  It  also  sets  n  
back  to  N- 1  and  decrements  m  by  1  to  start  the  
next  row.

The  last  rule  is  ACR  (Add  Cell  in  Row).  It  is  
responsible  for  the  generation  of  inner - cells.  It  
requires  that  n>0  (as  well  as  the  given  LHS 
structure  be  present)  ensuring  there  are  cells  to  
add  in  this  row.  It  then  decrements  n  by  1 
(leaving  m  unchanged.)

During  graph  rewriting  cells  are  labeled  with  their  
absolute  position  (x,y) which  could  be  used  by  
other  graph- grammars  to  process  cells  with  



respect  to  their  actual  position.  Strictly  speaking  
(x,y) is  not  necessary  for  this  generation  process.

Other  topologies  can  be  described  by  modifying  
the  rules  provided.

3.2 Translating  the  cell  space  into  a coupled  DEVS

Once  the  cell  space  has  been  generated  - once  
none  of  the  rules  in  the  GenCellSpace  grammar  
are  applicable -  we  apply  a  second  graph-
grammar  (Cells2DEVS) which  transforms  the  cells  
into  instances  of  the  given  DEVS  model  
describing  cell  behavior.  

In  Figure  4,  we  show  only  one  representative  rule  
(the  other  rules  deal  with  borders.)  The  rule  C2D 
shown  simply  rewrites  a  cell  node  with  an  
instance  of  a  DEVS model  with  the  appropriate  
input  and  output  ports  (tn  for  ‘to  North’,  fn  for  
‘from  North’,  etc.) 

Figure  4.  Rule  to  transform  cells  into  DEVS 
models

There  is  a  subtle  issue  here.  This  graph- grammar  
transforms  a  model  from  the  “Cellular  Spaces”  
formalism  to  one  in  the  DEVS formalism.  Thus,  
the  initial  model  satisfies  the  meta- model  of  
Section  3.1 ,  while  the  resulting  model  satisfies  
the  DEVS meta - model.  However,  while  the  graph-
grammar  is  executed,  the  intermediate  steps  will  
be  graphs  that  are  a  combination  of  both  
formalisms,  yet  without  being  valid  in  either.  This  
is  not  a  problem  as  long  as  the  initial  and  final  
models  are  valid,  which  this  grammar  guarantees.  
However,  one  has  to  be  aware  that  the  arrows  in  
the  “Cell  Spaces”  formalism  only  connect  cells,  
and  the  arrows  in  the  DEVS  formalism  are  
channel  instances,  which  only  connect  ports,  not  
cells.  To  get  around  this  problem,  cell  arrows  are  
rewritten  in  this  rule  to  be  “generic”  arrows  
belonging  to  the  GenericGraph  formalism.  Then  
we add  a simple  rule  which  rewrites  these  generic  
arrows  to  DEVS channels.  

It  is  also  possible  to  specify  alternative  
neighborhood  topologies  in  this  graph- grammar.

3.3 Simulation  code  generation

Once  the  Cell2DEVS  grammar  has  no  more  
applicable  rules,  a  third  grammar  (CodeGen )  is  
applied.  This  grammar  has  been  presented  
elsewhere  (see  [13,  8]).  The  main  idea  is  that  the  
main  rewriting  rule  marks  each  visited  DEVS 
model  and  has  a  side- effect  action  synthesizing  
the  code  from  the  structure  provided  in  the  DEVS 
instance.  Another  rule  collects  all  connections  
(marking  the  ones  already  visited)  in  order  to  
generate  couplings  in  the  coupled  DEVS model.

4 GAME OF LIFE APPLICATION

To  illustrate  our  approach  (and  our  simple  
“Cellular  Spaces”  formalism)  we  developed  a 
model  of  Conway’s  Game  of  Life  [6].  In  this  
model,  each  cell  corresponds  to  an  atomic  DEVS 
implementing  the  rules  of  a  cellular  automaton.  
To  show  this  model  we  take  a  conservative  
approach  whereby  all  cells  undergo  state  
transitions  simultaneously,  coordinated  by  a 
central  synchronizer.  This  is  not  ideal  from  a  
discrete - event  simulation  point  of  view,  but  we  
can  guarantee  that  the  behavior  of  the  cellular  
DEVS model  corresponds  precisely  to  that  of  a  
classical  cellular  automaton  of  the  Game  of  Life.  
We do  not  make  any  claims  with  respect  to  the  
simulation  efficiency  of  this  particular  model,  as  
our  aim  is  to  demonstrate  the  ease  with  which  
new  formalisms  can  be  developed  and  tools  
synthesized.

The  user  of  the  environment  specifies  the  
behavior  of  the  cells  and  that  of  the  synchronizer  
(visually)  as  DEVS models.  A detailed  description  
of  these  models  is  found  below.  From  such  
models,  code  representing  the  final  DEVS system  
is  generated.  The  generated  system  consists  of  a  
(closed)  coupled  model  which  contains  the  
synchronizer  and  another  coupled  model  of  the  
DEVS cellular  model.  

The  behavior  of  the  cell  synchronizer  and  the  
individual  cells  is  generated  from  the  models  
depicted  in  Figures  5.a  and  Figures  5.b  
respectively.  Both  models  have  been  graphically  
specified  through  the  interface.

The  whole  structure  of  the  cellular  DEVS model  
has  been  graphically  specified  and  generated  in  
our  (automatically  generated)  modeling  
environment,  and  the  state- transition  diagrams  
corresponding  to  the  cells’  and  synchronizer’s  
behavior.  



Figure  5.  (a) Synchronizer  and  (b) Cell  behavior

We describe  the  behavior  informally  below.  

The  central  cell  synchronizer  is  connected  to  
every  cell.  It  goes  through  a  simple  loop  of  
broadcasting  a  message  telling  every  cell  to  go  
ahead,  and  then  waits  for  all  cells  to  finish  their  
turn.  The  loop  continues  forever.  Each  cell  goes  
through  a  loop  of  four  modes  (or  phases):  
waiting ,  telling_and_counting ,  counting ,  and  
updating . The  state  is  a  tuple  of  the  form  (mode,  
status,  neighbors_checked,  neighbors_alive,  
remaining_time)  where:

– mode  is  one  of  the  four  phases  mentioned  
above,

– status  is  dead  or  alive ,

– neighbors_checked  is  the  number  of  events  
embedding  neighbors’  states  received  in  the  
current  iteration,

– neighbors_alive  is  the  number  of  neighbors  
who  are  alive  currently,

– remaining_time  is  the  time  to  the  next  
scheduled  internal  transition.

The  cell  remains  in  the  waiting  mode  until  it  
receives  an  event  from  the  global  cell  
synchronizer  to  go  ahead,  thus  guaranteeing  
every  cell  starts  the  iteration  at  the  same  time.

In  the  telling_and_counting  mode  it  sends  a 
message  to  all  its  neighbors  informing  them  of  its  
current  status  (dead  or  alive ).  If  it  receives  a  
message  from  a  neighbor,  it  updates  the  
neighbors_checked  and  neighbors_alive  
parameters  accordingly.  It  makes  sure  that  the  
time  of  the  next  internal  transition  scheduled  
remains  the  same  (by  setting  the  new  
remaining_time  to  be  the  current  remaining_time  
– elapsed ) 

Once  in  the  counting  mode,  it  continues  to  
receive  messages  from  its  neighbors.  When  all  of  
them  have  been  checked  it  moves  to  the  updating  
mode.  

In  the  updating  mode,  it  updates  the  state  
according  to  the  current  status  and  the  
neighbors_alive . External  transitions  are  ignored.

After  updating,  it  returns  to  the  waiting  mode,  
issuing  a  message  to  the  central  cell  
synchronizer,  informing  it  that  it  has  finished  its  
turn.

5 CONCLUSION

We  have  proposed  a  framework  for  the  visual  
modeling  and  simulation  of  “Cellular  Spaces”  
whose  semantics  is  given  in  terms  of  DEVS. 
Conway’s  game  of  life  has  been  used  to  
demonstra te  the  approach.  Different  software  
engineering  concepts  (meta- modeling,  graph-
transformations,  discrete - event  modeling  and  
simulation,  cellular  models,  etc.)  have  been  
combined  to  design  a  flexible  and  easy- to- use  
tool.  Meta- modeling  and  graph- transformation  
allow  to  efficiently  and  quickly  focus  on  the  
elements  of  interest  for  the  specification  of  the  
cellular  model.  The  use  of  meta- modeling  and  
graph- transformation  benefits  mostly  those  
building  modeling  environments,  but  also  
provides  some  benefits  to  the  modelers  by 
allowing  the  experimentation  of  different  
topologies  without  the  need  of  hardcoding  them.  
At  present,  the  framework  is  still  in  its  early  
stages,  and  it  needs  more  capabilities  to  tackle  
complexity  at  the  simulation  and  specification  
levels.  

In  our  study,  cells  have  uniform  rules  and  
neighborhoods.  We  are  currently  defining  
heterogeneous  rules  and  neighborhoods.  Also,  
dynamic  structure  representation  of  cellular  
systems  using  the  DSDEVS  formalism  is  a 
promising  research  area.  More  efficient  discrete -
event  simulators  should  be  explored  soon  and  
adapted  to  our  framework:  the  adevs  simulator  
([12]), which  is  based  on  new  efficient  algorithms  
[23],  and  the  DSCA  simulator  [24].  This  will  be  
easily  achieved  by  modifying  the  code  generator  
to  produce  C++  code  for  adevs  instead  of  Python  
code  for  PyDEVS.  This  demonstrates  the  
flexibility  of  our  framework  to  deal  with  different  
modeling  and  simulation  objectives.  

Finally,  more  complex  spatial  models  will  have  to  
be  specified  to  allow  dealing  efficiently  with  
complexity.  We  are  working  in  parallel  with  
economists  of  the  Università  di  Corsica  – 
Pasquale  Paoli,  to  define  a  spatial  economics  
model  which  will  be  able  to  account  for  large  
geographical  data  of  land  management.
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