
A FRAMEWORK FOR VISUAL SPECIFICATION AND SIMULATION OF CELLULAR SYSTEMS

Ernesto POSSE

McGill University

School of Computer Science

3480 University Street

H3A 2A7 Montreal, Canada

Alexandre MUZY

Università di Corsica

SPE lab, UMR CNRS 6134

Campus Grossetti, BP 52

20250 Corti, FRANCE

Hans VANGHELUWE

 McGill University

 School of Computer Science

3480 University Street

 H3A 2A7 Montreal, Canada

ABSTRACT

Cellular systems specification is an important
research topic as it allows modeling structure
and behavior of many real- world systems. We
use meta - modeling, model- transformation, and
the Discrete- EVent system Specification (DEVS),
for the automatic construction and simulation of
cellular models. Our focus here is on the
generation of those models through graphical
means (using meta - modeling and model-
transformation concepts), rather than on their
efficient simulation. Through the presented
framework, complexity of systems can be
adaptively and precisely tackled.

Keywords: Cellular models, Meta- modeling,
graph- transformation, DEVS, AToM3.

1 INTRODUCTION

A cellular system consists of a spatial
arrangement of interacting sub- systems. Local
interactions and behaviors of sub- systems lead
to global behavior due to their influence on the
state of neighboring sub- systems. At a
specification level, these local interactions and
behaviors are given once for diverse zones and
replicated subsequently throughout the whole
system.

To specify certain classes of cellular systems,
modelers can benefit from a generic, simple and
easily modifiable high- level visual specification
of both cellular topology (including sub- system

interconnections) and sub- system behaviors. If
the visual notations are sufficiently non- technical
and possibly domain- specific, it becomes
possible for domain - specialists in different
disciplines to model cellular systems.
Furthermore, if a graphical or semi- graphical
mechanism is provided to automatically
transform such visual specifications into
simulation code, the modeler obtains three
benefits: first, the generated code is guaranteed
to be robust (whereas manually developing the
code requires verification); second, the entire
process from visual specifications to generated
code is in the form of explicit model
transformations, which can be modified with
little programming involved in order to yield
variations of the cellular systems; and third, such
transformations constitute a precise
documentation of the process.

To faithfully and efficiently model and simulate
complex, spatially distributed systems such as
cellular systems, an appropriate formalism has to
be defined.

Visual (yet rigorously defined) languages can
provide an intuitive and explicit means for
specifying cellular models. Meta- modeling can be
used [1, 16] to quickly design and modify such
languages. Subsequently, according to the
system’s specification, the mapping between the
model and a simulate - able representation needs
to be specified. Such specification may be done in
the form of graph grammars or by means of
direct code- generation.

The Discrete - EVent system Specification (DEVS)
[22] is a formalism used to describe complex
discrete - event systems in a modular fashion.
This paper describes an approach to the
specification of cellular DEVS models from a
graphical description level, which the automatic
generation of suitable representations that can be
given as input to discrete - event simulators. The
discrete - event simulator used here for validation
is PyDEVS [3].

The rest of this paper is organized as follows. In
the next section the state - of- the- art of meta -
modeling, model- transformation, cellular
systems and discrete - event modeling and
simulation is presented. In Section 3, the cellular
framework is described and in Section 4, the
whole approach is validated through an
application to the Conway’s game of life.
Conclusions and discussions of this research,
including future research directions, are given in
Section 5.

2 STATE OF THE ART

Meta- modeling and graph- transformation can be
used to describe cellular systems formalisms in
terms of discrete - event modeling and simulation
concepts. Note that from such descriptions,
interactive, visual modelling environments can be
synthesized. In the sequel, these concepts and
relations between them are identified.

2.1 Meta- modeling and model transformation

Meta- modeling is the process of modeling the
syntax of models in a formalism by means of a
meta - model, in an appropriate meta - modeling
formalism. As such, it is sometimes referred to as
a grammar. For example, to specify the general
structure of Petri Net models, one can use models
in a formalism such as UML Class Diagrams [14]
or Entity- Relationship (ER) diagrams [4].

One of the advantages of meta - modeling is that
for many useful formalisms, models and meta-
models can be represented in a visual, intuitive
way. Furthermore, a graphical representation of
models allows the explicitly modeling of
operations such as model analysis and code
generation by means of graph- transformation ,
using graph- grammars [5].

A graph- grammar is the generalization of term
rewriting systems to the domain of graphs. A
graph- grammar consists of a set of rules of the
form L=> R, where L and R are graphs (called

LHS for “Left Hand Side” and RHS for “Right Hand
Side” respectively.) Such a rule represents the
action of replacing the sub- graph L by R in a
given host graph . A rule can be applied to a host
graph only if its LHS occurs in the host graph.
Sometimes the rules have an additional condition
and an action. In such case, the condition must
be satisfied for the rule to be applicable, and the
action represents some side- effect. Furthermore,
it is common for nodes and arcs in a graph to
have attributes. In the context of a graph-
grammar, the attributes of the LHS must be
matched by the relevant sub- graph in the host
graph in order for a rule to be applicable.
Informally, given a host graph and a graph-
grammar, all the rules in the grammar will be
applied until no more rules can be applied. A
graph- rewriting engine is an algorithm
implementing such a procedure.

Combining meta - modeling and graph rewriting
enables us to develop modeling environments
with relative ease and with little programming
involved, as the process is done at the level of
modeling. For this project we have used AToM³
[7], a tool that combines the two techniques.

By using meta - modeling we can describe (the
syntax of) the DEVS formalism [13, 8], as well as a
formalism to specify cellular spaces. From those
meta- models, AToM³ automatically generates a
visual modeling environment in which we can
specify both the local (DEVS) behavior of cells,
and the global structure of the cellular space. The
behavior of atomic DEVS components is given by
means of state - transition diagrams for the
modeler’s convenience. From these
specifications, we generate the actual cellular
DEVS model by means of graph- grammars.

2.2 Cellular systems

Cellular Automata (CA) [17] is a well- known
formalism for specifying spatially distributed
phenomena. Standard CA consist of an infinite
lattice of discrete identical sites, each site taking
on a finite selection of, for instance, integer
values. The values of the sites evolve
synchronously in discrete time steps according to
deterministic rules that specify the value of each
site in terms of the values of neighboring sites.
CA are models where space, time and states are
discrete.

This definition of basic CA (infinite lattice,
neighborhood and rule uniformity of the cells,
closure of the system to external events, discrete

states of the cells, etc.) is too limited to specify
complicated cellular models. Scientists often
need to tailor the CA formalism to their needs.

DEVS can be used as a foundation to devise more
powerful cellular formalisms. An approach to
formally merge CA and DEVS was presented in
[15]. Currently, the more direct approach is Cell-
DEVS [19], which is implemented in the CD++
toolkit [18]. This cellular formalism is closed
under coupling. High- level structures allow the
specification of discrete - event cellular models.
Delay constructs are provided to deal with
asynchronous time.

Lastly, another approach tries to deal with the
Dynamic Structure DEVS (DSDEVS) formalism [2]:
the Dynamic Structure Cellular Automata
specification [11]. The idea is to take advantage
of the Dynamic Structure Discrete Time System
Specification (DSDTSS) sub- formalism to deal
with discrete - time cellular models. The DSCA
focuses on discrete - time and dynamic structure
without dealing with timing issues of a discrete -
event approach. The latter can be inefficient to
deal with large discrete - time cellular models.

2.3 Modeling and simulation of discrete-
event systems

A DEVS atomic model is described by a structure
< X, S, Y, δint, δext , , ta >λ . X is the set of input
events, S is the state set, Y is the set of output
events, δint is the internal transition function,
δext is the external transition function, λ is the
output function, and ta is the time advance
function. The transition functions are triggered
by events, and they operate on inputs and the
state of the system when an event occurs.

A DEVS coupled model is described by a
structure <X, Y, D, {Mi}, {Ii}, {Zij}, select> . X is the
set of input events, and Y is the set of output
events. D is an index of components, and for each
i Є D, Mi is a DEVS model (atomic or coupled) . Ii is
the set of influencees of model i. For each j Є Ii,
Z ij is the i to j translation function. Select is the
tie- breaking function which sequentializes
simultaneous internal transitions.

DEVS models can be executed by a plethora of
simulators. Many of these simulators use
different programming languages, each one with
its own strengths and weaknesses.

As simulation mechanisms and specifications of
DEVS models can be difficult to understand for
non- specialists, visual languages are being

developed. [13, 18, 8]). However, to the best of
our knowledge, no visual languages have been
proposed for the specification of DEVS cellular
models.

3 CELLULAR MODELING FRAMEWORK

As described in the previous section, different
discrete - event system specifications can be used
at different abstraction levels (from abstract
mathematical structures to generated code). At
every level, choosing the right formalism allows
one to focus on relevant features of a problem. If
a modeling formalism is not well adapted to a
problem specification, analysis, design and
verification phases will not be efficient (or even
incorrect).

To help modelers to automatically and efficiently
switch between modeling (re- use, understanding,
exchange) and simulation (run- time efficiency
and accuracy) goals, meta - modeling and model
transformation can be used.

Our main goal is the (automatic) generation of
“Cellular Spaces” models from visual
specifications. The basic idea is that the modeler
provides a visual specification of the behavior of
a cell (in a visual notation for DEVS,) and a
“generator” specification which denotes a cellular
space. The framework then produces the full
cellular space, by replicating the given cell model.
This process is carried out by means of model
transformation. The main advantages are that:
firstly, the transformation guarantees the
robustness of the generated models (as opposed
to manually coding the DEVS representation of
the cellular space in some programming
language), and secondly, the model
transformations can by modified to yield
different topologies without the need for hard -
coding.

The environment consists of a tool to visually
specify DEVS models as well as general cellular
spaces, and to generate appropriate executable
representations of these models. The modeler
provides the specification for a single cell. Given
this as well as the model representing the
structure of the cell space, the process of
generating a DEVS representation can be done in
two ways: 1) via graph- transformation, and 2) via
direct code- generation.

In the first approach, the tool generates a
template of the cellular space, which is then filled
with instances of the DEVS model specified for
every individual cell. Once this is done, the

environment generates a code representation of
the large cellular DEVS model, which can be
processed by a DEVS simulator.

In the second approach, a single class is
generated for the DEVS model specified for every
individual cell, and a compact representation of
the coupled DEVS model representing the cell
space is also produced.

While the second approach is better both in
execution time and space complexity, we point
out that the first one is faster to implement and
is purely visual, giving deep insight and requiring
little programming knowledge as the whole
process is done at the level of models rather than
code. In particular, one of the main advantages of
using explicit graph- transformations to generate
the cell space is that is it straight - forward to
change the topology of the space, simply by
changing the set of rules, without requiring
explicit coding of the topological constraints.

As an illustration, we first describe the process of
generating 2D cellular spaces, and then the
process of instantiating the sites in the cellular
space with the DEVS model given by the modeler.

3.1 Specifying cellular spaces visually

First we start with the meta - model, which is
illustrated in Figure 1 as an Entity- Relationship
diagram. The main entities involved are the cells,
their neighborhood relations, and the generator
entity which is used to specify the global
structure of the space. There are two other
relations called first and last . These are used as
pointers during the space generation.

Figure 1. ER diagram of the cell space meta-
model

The meta- model describes what constitutes a
legal cell- space. Note however that it does not

specify the actual topology, it only describes the
possible connections. The topology itself is
generated by a graph- grammar.

From this ER (meta-)model, AToM³ generates the
appropriate modeling environment. Hereby, icons
representing the various entities (Generator and
Cell in this case) were modeled using AToM³’s
visual icon editor (a drawing tool).

Cells act as “place holders.” They are not
interesting in their own right. Their sole purpose
is to be replaced by instances of DEVS models
and to provide the topology of their
neighborhood. The neighborhood relations
explicitly describe such topology. The role of the
generator is dual: to specify the dimensions (M
rows, N columns) and to serve as a guide in the
generation processed by the graph- grammar.
Figure 2 shows a typical model. The
neighborhood arrows are labeled n , e, s or w to
denote the particular spatial relation (North, East,
South, and West, respectively, for a von Neumann
neighborhood.) The generator entity is the node
on top (with a diagonal through it.) It is labeled
with the dimensions of the form “m/M; n/N ”.
This means that it has M rows, N columns. The m
and n are explained below.

Figure 2. A typical cellular model

Now we specify a graph- grammar (GenCellSpace)
which is applied to a generator entity and
produces the template for the cellular space with
the appropriate dimensions. In Figure 3 (a
through d), we show the basic rules used to
generate a two- dimensional cell- space where
each cell has a von Neumann neighborhood, and
with a finite boundary. Different topologies can
be generated with a different set of rules.

a. Rule ACFR b. Rule ACR

c. Rule NR d.Rule FC

Figure 3. Basic rules used to generate a two- dimensional cell- space

The rules have the form L => R with an
associated condition C, where L and R are valid
models with respect to the meta- model of Figure
1.

The intuition behind this graph- grammar is to
generate the cell- space by constructing one row
at a time from the bottom- up, and each row is
built cell- by- cell from left (West) to right (East).

As mentioned above, the generator node is
labeled “m/M; n/N ” where M and N are the
dimensions. The m and n represent counters to
keep track of how many rows are left to create
(m) and how many cells are left to create in the
current row (n).

In these rules, the arrow labeled f acts as a
pointer to the first cell in the current column
being generated, and the arrow labeled l is a
pointer to the last cell generated in the current
row.

The first rule is FC (First Cell). This rule is
responsible for creating the first cell. It adds the
cell and sets the f and l arrows to this new cell.
Each new cell is given its own new label.

The second rule, ACFR (Add Cell First Row) takes
care of creating the first row. It requires that
m=M- 1 to ensure this is the first row, and that
n>0 to ensure this is not the last column. It adds
a new cell to the right of the one pointed by l (the
last added) and decrements the column counter
by 1 .

The third rule is NR (New Row). It requires m>0
so that there are more rows to add, and requires
that n=0 so that there are no more cells to add in
the current row. It then creates a new cell adding
the n and s arrows, and moves both f and l
arrows to point to this new cell. It also sets n
back to N- 1 and decrements m by 1 to start the
next row.

The last rule is ACR (Add Cell in Row). It is
responsible for the generation of inner - cells. It
requires that n>0 (as well as the given LHS
structure be present) ensuring there are cells to
add in this row. It then decrements n by 1
(leaving m unchanged.)

During graph rewriting cells are labeled with their
absolute position (x,y) which could be used by
other graph- grammars to process cells with

respect to their actual position. Strictly speaking
(x,y) is not necessary for this generation process.

Other topologies can be described by modifying
the rules provided.

3.2 Translating the cell space into a coupled DEVS

Once the cell space has been generated - once
none of the rules in the GenCellSpace grammar
are applicable - we apply a second graph-
grammar (Cells2DEVS) which transforms the cells
into instances of the given DEVS model
describing cell behavior.

In Figure 4, we show only one representative rule
(the other rules deal with borders.) The rule C2D
shown simply rewrites a cell node with an
instance of a DEVS model with the appropriate
input and output ports (tn for ‘to North’, fn for
‘from North’, etc.)

Figure 4. Rule to transform cells into DEVS
models

There is a subtle issue here. This graph- grammar
transforms a model from the “Cellular Spaces”
formalism to one in the DEVS formalism. Thus,
the initial model satisfies the meta- model of
Section 3.1 , while the resulting model satisfies
the DEVS meta - model. However, while the graph-
grammar is executed, the intermediate steps will
be graphs that are a combination of both
formalisms, yet without being valid in either. This
is not a problem as long as the initial and final
models are valid, which this grammar guarantees.
However, one has to be aware that the arrows in
the “Cell Spaces” formalism only connect cells,
and the arrows in the DEVS formalism are
channel instances, which only connect ports, not
cells. To get around this problem, cell arrows are
rewritten in this rule to be “generic” arrows
belonging to the GenericGraph formalism. Then
we add a simple rule which rewrites these generic
arrows to DEVS channels.

It is also possible to specify alternative
neighborhood topologies in this graph- grammar.

3.3 Simulation code generation

Once the Cell2DEVS grammar has no more
applicable rules, a third grammar (CodeGen) is
applied. This grammar has been presented
elsewhere (see [13, 8]). The main idea is that the
main rewriting rule marks each visited DEVS
model and has a side- effect action synthesizing
the code from the structure provided in the DEVS
instance. Another rule collects all connections
(marking the ones already visited) in order to
generate couplings in the coupled DEVS model.

4 GAME OF LIFE APPLICATION

To illustrate our approach (and our simple
“Cellular Spaces” formalism) we developed a
model of Conway’s Game of Life [6]. In this
model, each cell corresponds to an atomic DEVS
implementing the rules of a cellular automaton.
To show this model we take a conservative
approach whereby all cells undergo state
transitions simultaneously, coordinated by a
central synchronizer. This is not ideal from a
discrete - event simulation point of view, but we
can guarantee that the behavior of the cellular
DEVS model corresponds precisely to that of a
classical cellular automaton of the Game of Life.
We do not make any claims with respect to the
simulation efficiency of this particular model, as
our aim is to demonstrate the ease with which
new formalisms can be developed and tools
synthesized.

The user of the environment specifies the
behavior of the cells and that of the synchronizer
(visually) as DEVS models. A detailed description
of these models is found below. From such
models, code representing the final DEVS system
is generated. The generated system consists of a
(closed) coupled model which contains the
synchronizer and another coupled model of the
DEVS cellular model.

The behavior of the cell synchronizer and the
individual cells is generated from the models
depicted in Figures 5.a and Figures 5.b
respectively. Both models have been graphically
specified through the interface.

The whole structure of the cellular DEVS model
has been graphically specified and generated in
our (automatically generated) modeling
environment, and the state- transition diagrams
corresponding to the cells’ and synchronizer’s
behavior.

Figure 5. (a) Synchronizer and (b) Cell behavior

We describe the behavior informally below.

The central cell synchronizer is connected to
every cell. It goes through a simple loop of
broadcasting a message telling every cell to go
ahead, and then waits for all cells to finish their
turn. The loop continues forever. Each cell goes
through a loop of four modes (or phases):
waiting , telling_and_counting , counting , and
updating . The state is a tuple of the form (mode,
status, neighbors_checked, neighbors_alive,
remaining_time) where:

– mode is one of the four phases mentioned
above,

– status is dead or alive ,

– neighbors_checked is the number of events
embedding neighbors’ states received in the
current iteration,

– neighbors_alive is the number of neighbors
who are alive currently,

– remaining_time is the time to the next
scheduled internal transition.

The cell remains in the waiting mode until it
receives an event from the global cell
synchronizer to go ahead, thus guaranteeing
every cell starts the iteration at the same time.

In the telling_and_counting mode it sends a
message to all its neighbors informing them of its
current status (dead or alive). If it receives a
message from a neighbor, it updates the
neighbors_checked and neighbors_alive
parameters accordingly. It makes sure that the
time of the next internal transition scheduled
remains the same (by setting the new
remaining_time to be the current remaining_time
– elapsed)

Once in the counting mode, it continues to
receive messages from its neighbors. When all of
them have been checked it moves to the updating
mode.

In the updating mode, it updates the state
according to the current status and the
neighbors_alive . External transitions are ignored.

After updating, it returns to the waiting mode,
issuing a message to the central cell
synchronizer, informing it that it has finished its
turn.

5 CONCLUSION

We have proposed a framework for the visual
modeling and simulation of “Cellular Spaces”
whose semantics is given in terms of DEVS.
Conway’s game of life has been used to
demonstra te the approach. Different software
engineering concepts (meta- modeling, graph-
transformations, discrete - event modeling and
simulation, cellular models, etc.) have been
combined to design a flexible and easy- to- use
tool. Meta- modeling and graph- transformation
allow to efficiently and quickly focus on the
elements of interest for the specification of the
cellular model. The use of meta- modeling and
graph- transformation benefits mostly those
building modeling environments, but also
provides some benefits to the modelers by
allowing the experimentation of different
topologies without the need of hardcoding them.
At present, the framework is still in its early
stages, and it needs more capabilities to tackle
complexity at the simulation and specification
levels.

In our study, cells have uniform rules and
neighborhoods. We are currently defining
heterogeneous rules and neighborhoods. Also,
dynamic structure representation of cellular
systems using the DSDEVS formalism is a
promising research area. More efficient discrete -
event simulators should be explored soon and
adapted to our framework: the adevs simulator
([12]), which is based on new efficient algorithms
[23], and the DSCA simulator [24]. This will be
easily achieved by modifying the code generator
to produce C++ code for adevs instead of Python
code for PyDEVS. This demonstrates the
flexibility of our framework to deal with different
modeling and simulation objectives.

Finally, more complex spatial models will have to
be specified to allow dealing efficiently with
complexity. We are working in parallel with
economists of the Università di Corsica –
Pasquale Paoli, to define a spatial economics
model which will be able to account for large
geographical data of land management.

REFERENCES

[1] C. Atkinson and T. Kuhne. Rearchitecting the UML
infrastructure. ACM Transactions on Modeling and
Computer Simulation (TOMACS). Volume 12, Issue 4.
pp 290 - 321. October 2002.

[2] F. J. Barros. Modelling Formalisms for Dynamic
Structure Systems. ACM Transactions on Modelling and
Computer Simulation , v. 7, 1997, p. 501- 515.

[3] J.S. Bolduc and Hans L. Vangheluwe. The modelling
and simulation package PythonDEVS for classical
hierarchical devs. MSDL technical report MSDL- TR-
2001- 01, McGill University, June 2001.

[4] P. P. Chen. The entity- relationship model - toward a
unified view of data. ACM Transactions on Database
Systems, 1(1):9- - 36, 1976.

[5] H. Ehrig. Tutorial introduction to the algebraic
approach of graph - grammars. In Graph- Grammars
and Their Application to Computer Science. v. 291. 3-
14. LNCS. Springer. 1986.

[6] M. Gardner. The fantastic combinations of John
Conway' s new solitaire game `Life'. Scientific
American , 223(4):120- 123, October 1970.

[7] J. de Lara and H. Vangheluwe. AToM3: A tool for
multi - formalism and meta - modelling. In European
Joint Conference on Theory And Practice of Software
(ETAPS), Fundamental Approaches to Software
Engineering (FASE), Lecture Notes in Computer Science
2306, pages 174 - 188. Springer - Verlag, April 2002.
Grenoble, France.

[8] A. Levytskyy, E. J.H. Kerckhoffs, E. Posse, and H.
Vangheluwe. Creating DEVS components with the
meta- modelling tool AToM3. In Alexander Verbraeck
and Vlatka Hlupic, editors, 15th European Simulation
Symposium (ESS), pages 97 - 103. Society for Modeling
and Simulation International (SCS), October 2003. Delft,
The Netherlands.

[9] A. Muzy, E. Innocenti, J. F. Santucci, D. R. C. Hill.
Optimization of Cell Spaces Simulation for the Modeling
of Fire Spreading. Annual Simulation Symposium 2003:
289- 296

[10] A., Muzy, A. Aïello, P.- A. Santoni, B. P. Zeigler, J. J.
Nutaro, and R. Jammalamadaka. Discrete event
simulation of large- scale spatial continuous systems.
International Conference on Systems, Man and
Cybernetics (SMC), IEEE, 2005.

[11] A. Muzy, E. Innocenti, A. Aiello, J. F. Santucci, P- A
Santoni, D. R. C. Hill: Dynamic Structure Cellular
Automata in a Fire Spreading Application. ICINCO (3)
2004: 143- 151

[12] J. Nutaro. aDEVS- 0.2. C++ library for parallel
DEVS. University of Arizona, Tucson, 1999.
http: / /www.ec.arizona.edu / ~ n u taro.

[13] E. Posse and J.S. Bolduc. Generation of DEVS
modelling and simulation environments. In A. Bruzzone
and Mhamed Itmi, editors, Summer Computer
Simulation Conference. Student Workshop, pages S139

- S146. Society for Computer Simulation International
(SCS), July 2003. Montréal, Canada.

[14] J. Rumbaugh, I. Jacobson, and G. Booch. The
Unified Modeling Language Reference Manual (2nd
Edition). Addison - Wesley Object Technology Series,
2004.

[15] H. Vangheluwe and G. C. Vansteenkiste. The
cellular automata formalism and its relationship to
DEVS. In Rik Van Landeghem, editor, 14th European
Simulation Multi- conference (ESM), pages 800- 810.
Society for Computer Simulation International (SCS),
May 2000. Ghent, Belgium.

[16] D. Varro and A. Pataricza. VPM: A visual, precise
and multilevel metamodeling framework for describing
mathematical domains and UML (The Mathematics of
Metamodeling is Metamodeling Mathematics). Software
and Systems Modeling. Volume 2, No. 3 pp. 187 - 210.

[17] J. von Neumann. Theory of Self- reproducing
Automata. University of Illinois Press, 1966. Edited and
completed by Arthur W.Burks.

[18] G. A. Wainer, G. Christen, A. Dobniewski. Defining
DEVS models with the CD++ tool . In Proceedings of
European Simulation Symposium. Marseilles, France.
2001

[19] Wainer, G., and N. Giambiasi, "Application of the
cell- DEVS paradigm for cell spaces modeling and sim ­
ulation". Simulation , v. 76, 2001, p. 22- 39.
[20] L.v. Bertalanffy, General system theory.
Foundations, development, applications. , George
Braziller. New York, 1968.

[21] B. P. Zeigler. Multifaceted Modeling and Discrete -
Event Simulation. Academic Press. London. 1984.

[22] B. P. Zeigler, Tag Gon Kim, Herbert Praehofer.
Theory of Modeling and Simulation. Second Edition.
Academic Press Inc. 2000.

[23] A., Muzy, and J. J. Nutaro, "Algorithms for efficient
implementation of the DEVS & DSDEVS abstract
simulators". 1st Open International Conference on
Modeling and Simulation (OICMS), 2005, p. 273- 279.

[24] A., Muzy, E. Innocenti, F. Barros, A. Aïello, and J. F.
Santucci. Efficient simulation of large- scale dynamic
structure cell spaces. Summer Computer Simulation
Conference , 2003, p. 378- 383.
[25] Hu X, Zeigler BP. 2004. A high performance
simulation engine for large- scale cellular DEVS models .
Presented at High Performance Computing Symposium
(HPC'04)
[26] Nutaro, J., B. P. Zeigler, R. Jammalamadaka, and S.
Akrekar, "Discrete event solution of gaz dynamics
winthin the DEVS framework: exploiting
spatiotemporal heterogeneity". International
Conference for Computational Science , 2003.

[27] Wainer, G., "Modeling and simulation of complex
systems with Cell- DEVS". Winter Simulation
Conference , 2004, p. Tutorial.

