
Parsing revisited: a transformation-based approach to parser

generation.

Ernesto Posse

Modelling, Simulation and Design Lab

School of Computer Science

McGill University

Montreal, Quebec, Canada

Abstract

We present a new parser generator called ape-

riot based on grammar transformation. This ap-
proach retains the complexity and performance ad-
vantages of LL(1) parsers while allowing to parse a
large set of non-LL(1) grammars and without impos-
ing a lookahead limit. We demonstrate the practical-
ity of this approach with a case-study of a realistic
language.

1 Introduction

Parsing is generally considered a �closed� �eld of re-
search. It appears as if there was a general agreement
that all questions have been answered. But are the
existing tools the only possible way of doing things?
All standard parser generators su�er from di�erent
limitations. The big question from a pragmatic point
of view is how to negotiate the available trade-o�s.
Sometimes it pays to revisit an old concept from a
fresh angle.
The most common types of parser generators pro-

duce either top-down parsers (LL(k)) or bottom-up
parsers (LR(k)). Usually the resulting parsers de-
pend on the number (k) of lookahead tokens required
to decide which rule to apply in case of ambigui-
ties. This results in limitations on the languages
that can be recognized as well as incrementing the
space complexity of the resulting parser: the number

of recognizable grammars grows with larger looka-
head, but the space required to store the parsing ta-
ble also grows, which in turn a�ects negatively the
parser's performance. When k is 1 we have very ef-
�cient parsers, but the set of recognizable grammars
is seriously restricted, resulting in less expressiveness
and more work for grammar designers.

Our approach is simple: transform a non-LL(1)
grammar into an LL(1) grammar which can then
be parsed e�ciently. Although there are gram-
mars which we cannot transform with our current
approach, the set of non-LL(1) grammars is large
enough to allow us to handle many realistic gram-
mars, and in particular we do not impose a lookahead
limit.

It has been long known that any context-free gram-
mar can be translated into an equivalent grammar in
Chomsky Normal Form (see for instance [4],) but the
drawback is the large number of new rules in the re-
sulting grammar. This appears at �rst glance to be
an impractical approach. Furthermore, most parser
generators must deal with actions associated with the
rules, and it is not clear what to do with these actions
when the grammar is transformed. Here we show
that by using a transformation similar to Chomsky
normalization, coupled with some simplifying trans-
formations we reduce the number of generated rules
enough to make it practical. Furthermore, we show
how to deal with rule actions.

We have implemented this approach in a parser

1



generator called aperiot, written entirely in Python,
which generates parsers to be used by Python pro-
grams.
The rest of the paper is organized as follows: sec-

tion 2 reviews the basic concepts of context-free
grammars and parsing. Section 3 introduces the ape-

riot grammar description language and the Python
API for client applications by means of a simple ex-
ample. Section 4 discusses ambiguous grammars and
the process of translating them into an LL(1) form.
Section 5 describes how rule actions are handled by
the transformation. Section 6 discusses this approach
with respect to traditional approaches to parsing and
parser generation. Section 7 discusses a more com-
plex case study of a realistic language. Finally, sec-
tion 8 provides some �nal remarks.

2 Background

The process of parsing text is usually performed in
two stages:

1. Lexical analysis, or lexing, and

2. Syntactic analysis or parsing

Lexical analysis is performed by a lexer which takes
as input a stream of characters (the source text,) and
produces a string of tokens or lexemes, this is, �words�
or sequences of characters that are to be treated as
units, such as numbers, identi�ers, keywords, etc.
Syntactic analysis is performed by a parser, which

takes as input the sequence of tokens produced by the
lexer and produces a concrete syntax tree, also known
as parse tree, representing the syntactic structure of
the text according to some given grammar.
Usually the parse tree itself is processed further

by applying actions to it in order to produce some
desired outcome. Normally the desired outcome is
an abstract syntax tree, which contains the structure
of the text abstracting away speci�c details about the
text which are irrelevant for any further processing.
A grammar consists of a set of rules which describe

the structure or composition of the text in terms of
the text's components. Rules are annotated with ac-

tions which are applied to the corresponding nodes

in the parse tree in order to obtain some desired out-
come.
In aperiot, a parser object encapsulates all these

operations: the parser object performs lexical analy-
sis, parse tree generation and application of actions.

2.1 Context Free Grammars

The most common type of grammar is known as �con-
text free grammar,� or CFG for short.
A simple rule in a CFG has the form:

L → w

where L is called a non-terminal symbol or simply
a non-terminal, and w is a sequence of symbols or the
special symbol ε which represents the empty string.
The symbols in the sequence w may be non-terminals
and other symbols called terminals.
Terminal symbols are those symbols or tokens

which can appear literally in the text. Non-terminal
symbols represent syntactic categories and a rule
L → w states that the non-terminal L can be replaced
by the sequence w. This is, if there is a sequence

uLv

applying the rule L → w yields the sequence

uwv

In the context of parsing one may interpret a rule
L → w as stating that if the sequence of symbols w
occurs in the input then it can be seen as a single
occurrence of the symbol L.
A grammar may also have �composite� rules of the

form:
L → w1

| w2

...
| wn

In such a rule, each wi represents an alternative. In
other words, the rule states that L can be substituted
by either w1, w2, ..., or wn. Such a rule is simply a
short hand notation for the following set of rules:

2



L → w1

L → w2

...
L → wn

A grammar has a distinguished non-terminal sym-
bol called the start symbol. This symbol represents
the topmost syntactic category.
A given text is successfully parsed if it can be re-

produced by the following procedure:

1. begin with the start symbol S

2. �nd a rule S → w, and replace S by w

3. choose a non-terminal symbol N in w

4. �nd a rule N → w′ and replace the occurrence
of N in w by w′

5. repeat from step 3 until there are no non-
terminals left.

2.2 Types of parsers

The procedure speci�ed above provides a possible
way to determine whether some text conforms to a
grammar, but it is by no means the only way to do so.
There are di�erent types of parsers, which generally
are classi�ed as either �top-down� or �bottom-up�.
Top-down parsers follow a mechanism similar to

the one described above, beginning with the start
symbol and attempting to match the text by applying
the rules. Bottom-up parsers on the other hand, scan
the input stream and try to apply the rules �back-
wards� so that if the start symbol is reached, the
text is successfully parsed.
The most common type of top-down parsers are

called LL parsers and the most common type of
bottom-up parsers are called LR parsers. The main
di�erence between the two is that LL parsers yield
the left-most derivation of the text if one exists while
LR parsers yield the right-most derivation. The main
consequence for the user is that for a given grammar,
the generated parse trees may be di�erent.
LL parsers and LR parsers use a parsing table to

direct their behaviour and help them decide which

rule to apply in any possible situation. This table is
generated from the grammar provided.

3 A simple example

Using aperiot to generate parsers is straightforward.
The basic idea is this: 1) describe the target gram-
mar using aperiot's meta-language, a language similar
to standard BNF notations. 2) Use the aperiot gram-
mar compiler to produce one of two possible grammar
representations. 3) In the client application, load one
of the generated representations using a simple API
provided by aperiot, which results in a Python ob-
ject, the parser, that can parse strings or �les given
as input.
To illustrate this process as well as aperiot's meta-

language, we'll consider a simple language for arith-
metic expressions. The application is a simple calcu-
lator.

1. The following is a typical grammar for arithmetic
expressions written in aperiot's meta-language
(saved in a text �le named aexpr.apr.)

# This is a simple language

# for arithmetic expressions

numbers

number

operators

plus �+�

times �*�

minus �-�

div �/�

brackets

lpar �(�

rpar �)�

start

EXPR

rules

EXPR -> TERM : �$1�

| TERM plus EXPR : �$1 + $3�

3



| TERM minus EXPR : �$1 - $3�

TERM -> FACT : �$1�

| FACT times TERM : �$1 * $3�

| FACT div TERM : �$1 / $3�

FACT -> number : �int($1)�

| minus FACT : �-$2�

| lpar EXPR rpar : �$2�

In this �le, the sections titled �numbers,� �op-
erators,� and �brackets� de�ne symbolic names
for the input tokens. The last section pro-
vides the actual rules. Each rule is annotated
with a �Python expression template,� this is, a
Python expression that uses placeholders (num-
bers preceded by `$'.) The placeholders refer
to the corresponding symbol in the symbol se-
quence. For example, in FACT times TERM :

�$1 * $3�, the placeholder $1 refers to FACT,
and $3 refers to TERM. When parsing, if this rule
is applied, the result of applying the actions that
yield a FACT will replace the $1 entry and the re-
sult of applying the actions that yield TERM will
replace the entry $3, and the result of evaluating
the full Python expression will be the result of
applying this rule.

2. From a grammar �le we generate a suitable
Python representation of the grammar using
aperiot's grammar compiler.

On the command-line, we execute the grammar
compiler by:

apr aexpr.apr

This will generate a Python package called
aexpr_cfg in the same directory where
aexpr.apr is located. This package contains a
module called aexpr.py.

3. In the client application, we load the generated
grammar representation using a simple API pro-
vided in aperiot. Loading this representation re-
sults in the parser itself, a Python object which
can process strings or �les given as input.

Assuming that the aperiot package and the directory
where we generated aexpr_cfg are in the Python
path, in the client application we can write, for ex-
ample:

from aperiot.parsergen import build_parser

myparser = build_parser(`aexpr')

text_to_parse = file(�myfile.txt�, `r')

outcome = myparser.parse(text_to_parse)

text_to_parse.close()

print outcome

The outcome is, by default, the result of applying
the rule actions. The process of generating the parse
tree and applying actions can be explicitly divided
by passing an extra argument to the parse method as
follows:

tree = myparser.parse(text_to_parse,

apply_actions=False)

outcome = myparser.apply_actions(tree)

The scheme described above generates a mini-
mal Python representation of the grammar in the
aexpr.pymodule within the aexpr_cfg package, and
the parser object is built at run-time in the client
application by the build_parser function. This ap-
proach, however, may be time-consuming if the lan-
guage's grammar is large. aperiot provides alternative
approach, in which the parser object is built dur-
ing grammar compilation and saved into a pickle �le
(with a .pkl extension,) which then can be quickly
loaded by the application. To do this, we use the -f
command-line option of the apr script:

apr -f aexpr.apr

This will generate other �les in the aexpr_cfg pack-
age, in particular a �le called aexpr.pkl, containing
the compiled parser object itself. Then, in the client
Python application, we use the load_parser func-
tion instead of the build_parser function.

4



4 From ambiguous grammars to
LL(1) grammars

A grammar is ambiguous if there are rules such that
when applied there might be more than one possible
alternative because the �rst symbol is the same for
several alternatives. For example, the following rule
is ambiguous:

A → bm
| bn

This is an example of direct ambiguity, but rules
may also be indirectly ambiguous, as is the case in
the following set of rules:

A → Bm
| Cn

B → x
C → x

There are several ways of dealing with ambiguous
grammars.

A common approach is to use backtracking: when-
ever the parser �nds more than one rule that could be
applied, it remembers the current state and chooses
one of the rules. If at some point parsing fails, it
returns or �backtracks� to the more recently stored
�choice point,� and attempts another rule.

A second approach is to �look ahead� in the input
stream and use more than one input token to decide
which rule to apply. An LL parser (resp. LR parser)
that requires looking ahead k input tokens is called
an LL(k) parser (resp. LR(k) parser.) k is called
the lookahead of the parser. An LL(1) parser cannot
recognize any ambiguous grammar.

A third approach, and the one used by aperiot, is to
transform the grammar from an ambiguous grammar
to a non-ambiguous grammar.

The core transformation, known as left-factoring

(see [1]), is as follows. Suppose there is a rule of the
form:

A → Bm
| Bn
| p

Then we can rewrite the rule as

A → BA′

| p

where A′ is a new non-terminal symbol, and we
introduce a rule:

A′ → m
| n

Now, this new rule may itself be ambiguous, so we
must apply the transformation repeatedly until there
are no more rules to transform, i.e. until we reach a
�xed-point.
This basic transformation is generalized to any am-

biguous rule where there might be more than two
alternatives starting with the same symbol.
This approach is the core of Chomsky normaliza-

tion1. The resulting grammar will recognize the same
language but it will also have too many rules, many
of which are super�uous. To avoid having too many
rules we apply a second simplifying transformation,
which gets rid of all simple or unit rules, i.e. rules
that have only one alternative: For any simple or unit
rule A → w, where A is not the start symbol, replace
all occurrences of A by w in all other rules, and elim-
inate the rule A → w. We repeat this until there are
no changes in the grammar. We call this transforma-
tion inlining. Since we only �inline� non-composite
rules, the transformation is guaranteed to terminate.

aperiot's parser generator applies the inlining trans-
formation �rst, then left-factoring and �nally inlining
again. In this way we can deal with a large class of
ambiguous grammars, even many indirectly ambigu-
ous grammars which would otherwise be rejected by
similar parser generators. For example,

S → pAq
A → Bm

| Cn
B → x
C → x

1Technically, in Chomsky Normal Form, all rules have the
form A → BB′ or A → x where B and B′ are non-terminals
and x is terminal. In our approach, we do not require B to be
non-terminal, and this results in generating less rules.

5



is an indirectly ambiguous grammar which cannot
be handled by a standard LL(1) parser, but ape-

riot can recognize it by �rst applying the inlining
transformation which results in

S → pAq
A → xm

| xn

which is then left-factored into

S → pAq
A → xA′

A′ → m
| n

which �nally is transformed by inlining again into

S → pxA′q
A′ → m

| n

5 Dealing with rule actions

Grammar rules are annotated with actions to perform
computation on the parse tree. Usually these actions
involve constructing an abstract syntax tree, but in
general they may be any operation on the nodes of the
parse tree. As shown in section 3, in aperiot, actions
are �Python template expressions,� i.e. expressions
which use placeholders (numbers preceded by `$',) to
refer to symbols in the rule.
These actions are transformed by aperiot as Python

functions. For example consider the rule

TERM -> FACT times TERM : �$1 * $3�

from section 3. The generated action looks like this:

def term_action_1(x1, x2, x3):

return x1 * x3

where the parameters x1, x2 and x3 represent the
outcomes of the rules for the corresponding non-
terminal symbols or the tokens for terminal symbols.
Note that this function is not recursive as might be
expected. This is because in aperiot these actions are
actually post-actions of a depth-�rst traversal of the

parse tree. The parse tree is �rst built and then vis-
ited. When visiting a node the sub-trees are visited
�rst recursively each yielding an outcome from ap-
plying actions. These outcomes are collected as an
ordered tuple and then the node's action is applied
passing as arguments the elements of this tuple.
This basic approach works for LL(1) grammars,

but what if the grammar needs to be transformed?
We introduce new functions for each transformation.
In the case of the inlining transformation, for each

unit rule
B → β : g(b1, ..., bm)

where g(b1, ..., bm) is the associated action with m
being the length of β, and any rule

A → αBγ : f(a1, ..., an, b, c1, ..., ck)

where f(a1, ..., an, b, c1, ..., ck) is the associated ac-
tion with n and k being the length of α and γ respec-
tively, we eliminate both rules and add a new rule

A → αβγ : f ′(a1, ..., an, b1, ..., bm, c1, ..., ck)

where the new function f ′ is de�ned as

f ′(a1, ..., an, b1, ..., bm, c1, ..., ck)
def
=

f(a1, ..., an, g(b1, ..., bm), c1, ..., ck)

Now we describe how to deal with left-factoring:
for each composite rule

A → Bα1 : f1(b, a1, ..., an)
| Bα2 : f2(b, a1, ..., am)
| β : g(b1, ..., bk)

we replace it by

A → BA′ : f ′(b, c)
| β : g(b1, ..., bk)

A′ → α1 : f ′1(a1, ..., an)
| α2 : f ′2(a1, ..., am)

where f ′, f ′1 and f ′2 are new functions de�ned as
follows:

f ′(b, c)
def
= c(b)

f ′1(a1, ..., an)
def
= λx.f1(x, a1, ..., an)

f ′2(a1, ..., am)
def
= λx.f2(x, a1, ..., am)

6



These functions guarantee the same outcome as
the original. To see this, suppose that the rule
A → Bα1 is applied in the original grammar, yield-
ing f1(b, a1, ..., an) as a result, assuming that the out-
come of B was b and for the sequence α the outcomes
are a1, ..., an. We show that the new grammar will
produce the same outcome. In the new grammar the
rule actions of A′ → α1 and A → BA′ are applied2.
The �rst rule yields f ′1(a1, ..., an) and therefore the
second rule yields f ′(b, f ′1(a1, ..., an)) which evaluates
to

(f ′1(a1, ..., an))(b)

this is,
(λx.f1(x, a1, ..., an))(b)

which reduces to3

f1(b, a1, ..., an)

as required.
While this approach works correctly, one problem

arises: we introduce many new functions, which take
up a lot of space and time to call. Nevertheless we
can deal with this problem e�ectively by doing λ-term
reduction when we introduce a new rule and then
eliminating all new functions which are not referred
to by another function. This strategy eliminates most
newly added functions dramatically as demonstrated
in section 7.
In order to perform this λ-term reduction, ape-

riot embeds a simple λ-calculus interpreter which per-
forms these operations. Using Python's own lambda
construct does not work because Python only per-
forms execution and does not provide a means to do
term simpli�cation.

6 Analysis and comparison with
other approaches

Our approach produces LL(1) grammars and there-
fore the complexity analysis is the same as for LL(1)

2They are applied in this order since actions are applied in
a post-order traversal of the parse tree, as explained above.

3According to the standard semantics of the λ-calculus, see
[2].

parsers: parsing time complexity is linear in the
length of the input stream, as processing each input
token is a constant-time operation consisting mainly
of a table lookup. The space used is O(nm) where
n is the number of non-terminals and m is the num-
ber of terminal symbols. This compares favourably
against LL(k) parsers which require in the worst case
n m!

(m−k)! entries in the parsing table and parsing time

is O(Nk) in the worst case, where N is the length of
the input stream. This is due to the fact that each ac-
cess to the table requires comparing k tokens instead
of 1.
There are two fundamental limitations to our ap-

proach from the point of view of expressiveness: no
handling of left-recursion in rules and limited han-
dling of indirectly ambiguous rules. The �rst limita-
tion is inherent to LL parsing and can be dealt with
using a simple transformation (see [1] for example.)
Therefore it is not a good criterion for comparison
with other LL parsers. The second limitation is more
serious. Section 4 described how by using the inlin-
ing transformation before left-factoring we can han-
dle certain grammars with indirect ambiguity, namely
grammars such as:

S → pAq
A → Bm

| Cn
B → x
C → x

(1)

Here, the indirect ambiguity is caused by the non-
terminals B and C, but by the use of inlining we
eliminate the problem. aperiot's limitation becomes
then obvious: if the rules for B or C were composite
rather than simple, for example as in

S → pAq
A → Bm

| Cn
B → x

| y
C → x

| z

(2)

then the inlining transformation doesn't apply and
therefore the ambiguity remains.

7



Inlining composite rules is not a feasible alternative
because it amounts to explicitly generating the whole
language and is non-terminating.
Nevertheless, by transforming grammars into

LL(1) form, aperiot does not require lookahead to
handle grammars such as (1) whereas an LL(k) parser
will not be able to handle ambiguities beyond k to-
kens. The set of languages recognized by aperiot is
not a subset of LL(k) for any k ∈ N: for example, the
following is not recognized by an LL(2) parser but is
recognized by aperiot:

S → A
A → abcd

| abce

The trade-o� is then apparent: with aperiot we give
up some expressiveness with respect to LL(∞) gram-
mars but we gain in parsing time, space used, pars-
ing generation time and expressiveness with respect
to LL(k) grammars.

7 Case study: kiltera

We have used aperiot to generate the parser for a
realistic language called �kiltera� (see [3].) Syntacti-
cally, kiltera borrows from several languages includ-
ing Python, ML, Erlang and OCCAM, and there-
fore has many familiar constructs. Its syntax uses
indentation-based nesting.
From the syntax analysis point of view there are a

couple of constructs which are particularly interest-
ing, and which are problematic for LL(k) grammars.
There are two closely related constructs called �par-
allel composition� and �indexed parallel composition�
which have a similar form but must nevertheless be
distinguished. The main syntactic category is called
a �process.�
A normal parallel composition has the form:

par

process1

process2

...

processn

An indexed parallel composition has the form

par

process1

process2

...

processn

for pattern in sequence_expression

A standard LL(k) parser would not be able to dis-
cern between the two and pick up the required rule if
the number of tokens in the list of processes exceeds
k. Yet, in aperiot this case is easily handled by the
following rules:

PROCESS -> ...

| par SUITE : �...�

| par SUITE for PATT in EXPR : �...�

SUITE -> newline indent PLIST dedent : �...�

PLIST -> PROCESS : �...�

| PROCESS PLIST : �...�

From the point of view of performance it is interesting
to see the e�ect of introducing new rule actions and
doing action simpli�cation as described in section 5.
We carried out the tests on a 3 GHz Pentium IV on
both Linux and Windows XP.

The �rst version of aperiot did not perform ac-
tion simpli�cation. It just generated new actions
as Python functions. This resulted in massive �les
which took too long to load. Generating the Python
representation for kiltera's grammar took on all runs
about 1 minute, and produced a 13MB �le which on
average took between 9 and 10 seconds to load in
client applications. Parsing time of a 3K �le took on
average about 2 seconds.

The last version of aperiot does perform action sim-
pli�cation at compile time, and the results show a
dramatic improvement. Generating the Python rep-
resentation for kiltera's grammar takes between 3 and
4 seconds, and produces a 300KB �le which on aver-
age takes less than 1 second to load in client applica-
tions. Parsing time of a 3K �le is imperceptible.

We obtained similar results doing bootstrapping of
aperiot's own meta-language.

8



8 Final remarks

We have introduced a new parser generator based on
the principle of grammar transformation. The main
contributions are: 1) showing how to deal with a large
class of indirectly ambiguous grammars by means of
combining well known transformations, and 2) show-
ing how to deal with rule actions in these transforma-
tions. We believe that this approach breathes new air
into LL parsing, and in particular allows us to take
advantage of the performance bene�ts of LL(1) pars-
ing while preserving a great deal of expressiveness
in the recognizable grammars. Considering this, as
well as the light-weight nature of aperiot, we believe
it provides a useful alternative to parsing in Python
applications.
There are several issues to be addressed in future

versions of aperiot. In particular we are interested
in adding transformations to eliminate left-recursion
and ε-rules, as well as adding some syntactic sugar
to the meta-language to make it closer to standard
BNF notations. Finally, a more �exible lexer will be
added as well.

aperiot can be obtained at
http://moncs.cs.mcgill.ca/projects/aperiot.

kiltera can be obtained at
http://moncs.cs.mcgill.ca/projects/kiltera.

References

[1] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ull-
man. Compilers: Principles, Techniques and

Tools. Addison-Wesley, 1986.

[2] H. P. Barendregt. The Lambda Calculus. Num-
ber 103 in Studies in Logic and the Foundations
of Mathematics. North-Holland, Amsterdam, re-
vised edition, 1991.

[3] Ernesto Posse. kiltera: a language for concurrent,
interacting, timed mobile systems. Technical Re-
port SOCS-TR-2006.4, School of Computer Sci-
ence, McGill University, 2006.

[4] Michael Sipser. Introduction to the Theory of

Computation. PWS Publishing, 1997.

9


