Computer Architecture

e Program instructions:

— Instructions are numbers (ultimately in binary form)
+ 00110101 represents ADD (adding numbers)
% 10101100 represents MULT (multiplication)
% 01010111 represents LOAD (load data from memory to a register)
% 10100111 represents STORE (stores data from a register to memory)

D McGill

Computer Architecture

e Instructions, or operators may have parameters

— Adding the contents of registers R1 and R2 and put
the result in R3:

00110101, 10001001, 10001010 J0001011]
ADD R1 R2 R3

x Loading data from memory cell 26 and put it in
register 2

11111001, 00011010 10001010,
LOAD 26 R2

D McGill

Computer Architecture

e Different kinds of processors have different instruction

sets (e.g. Pentium, PowerPC, Alpha, SPARC, Motorola)

— Each instruction set has different instructions,
and associates different numbers to each type of
Instruction

— Hence, a program for one type of processor cannot
be directly executed by a different processor.

e Portability: the ability to run (execute) a program in
more than one type of processor.

D McGill 3

Programming Languages

e A program as understood by the computer is a long
sequence of words (bits):

110110001110100010010001001010010100101001001010

— Machine Language

e But each instruction can be written in a fashion readable
by humans:

LOAD [26], Rl

LOAD 3, R2

ADD R1, R2, R3

STORE R3, [1700000029]

— Assembly language

e Assembler: a program that translates an assembly
language program into its machine language equivalent.

D McGill

Programming Languages

e Assembly is a low-level language

e High-level languages abstract the components of the
machine

X =y + 3;

— Java, C, C++, Python, Perl, ML, Scheme, Prolog,
Ada, Pascal, Basic, Fortran, Cobol, ...

e Abstracting the components is good: when
implementing an algorithm you don't have to think
about the component of the computer. You focus on
the problem.

e Compiler: a program that translates a high-level
language program into its machine language equivalent.

D McGill

A simple Java program

// This is a very, very, simple program

public class HelloWorld

{
public static void main(Stringl[] args)
{
System.out.println(‘“Hello, World!’’);
by
b

D McGill

A simple java program

e Java is case-sensitive:
HelloWorld
is not the same as

helloworld

D McGill

From code to a running program

e Editing

e Compilation/Interpretation

— Compilation:
* Translation
x Execution

— Interpretation:
x Execution

D McGill

Editing

HelloWorld.java

Sourc_e code
file

Java

D McGill

Sourc_e code
file

Java

Compilers

Target code
file

Machine Language

D McGill

10

Source code
file

Java

Compilers

Target code
file

Pentium
Machine Language

Target code
file

PowerPC
Machine Language

Target code
file

Alpha
Machine Language

D McGill

11

Compilers

Sourc_e code
file

Java

Interpreter

D McGill

12

Compilers

nterpreter

Pentium

Source code

file terpreter 4

PowerPC

Java

nterpreter 3

Alpha

D McGill

13

Compilers

HelloWorld.java HelloWorld.class
Source code Target code
file file Interpreter
Java Java Bytecode JVM

(Java Virtual Machine)

D McGill

14

Compilers

nterpreter

Pentium

HelloWorld.java HelloWorld.class
Source code Target code
file file
Java Java Bytecode PowerPC

nterpreter 3

Alpha

D McGill

15

Programming Languages

e A programming language is a formal language to
describe algorithms

e A language is a means of communication

e A programming language is a means of communication
between a human and a computer, but also between
humans

e A programming language is formal: well-defined

D McGill

16

Languages

e Elements of a language

— Alphabet
— Syntax (grammar)
— Semantics (meaning)

e Elements of Java:

— Alphabet of Java: ASCII
— Syntax: 'constructs’

x Class definitions

*x Method definitions

x Statements

x others
— Semantics: computation

D McGill

17

Errors

e FErrors:

— Compile-time errors
— Run-time errors

x Exceptions

x Logical

D McGill

18

Programming Languages

e Machine language (binary, processor dependent)

e Assembly language (textual, low-level, processor
dependent)

e High-level languages (textual, abstract, processor
independent)

— There are many high-level languages: Java, C, C++,
C#, ML, Haskell, Scheme, Prolog, Python, Perl, etc.
— Different types of languages:
x |Imperative
- Procedural
- Object Oriented
- Concurrent
x Declarative:
- Functional
- Logic
x Mixed

D McGill |

Executing programs

e Editing

e Compilation/Interpretation

— (Native) Compilation: Translation to machine
language + Execution
x Advantages: Fast, processor specific code is
generated
x Disadvantage: Needs a compiler for each type of
processor; generates a different target file for each
type of processor
— Interpretation: Direct execution
x Advantages: Execution is processor independent.
Does not generate a different target file for each
possible processor (portability)
x Disadvantage: Slow execution due to overhead of
Interpretation.
— Combined: Translation to bytecode + interpretation
of bytecode
x Best of both worlds: Only one file is generated
(portable) and it is faster to execute than direct
interpretation (but slower than native compilation.)

D McGill

20

Errors

e FErrors:

— Compile-time errors
— Run-time errors

x Exceptions

x Logical

D McGill

21

Errors

D McGill

22

Basic Java Syntax

A Java program is made up of one or more class
definitions

A class definition is made up of zero or more method
definitions

A method definition is made up of zero or more
statements and variable declarations

Roles:

— C(lasses: Modules and Types of objects
— Methods: procedures, functions, algorithms
— Statements: instructions

Pl
e
*

McGill

23

Basic Java Syntax

public class ClassName

{
// Body of ClassName

/] ...
// List of method definitions

D McGill

24

Basic Java Syntax

public class HelloWorld

{
// Body of ClassName

/] ...
// List of method definitions

D McGill

25

Basic Java Syntax

public class Classname

{
// method header
{
// method body: list of statements
Iy
by

D McGill

26

Basic Java Syntax

public class HelloWorld

{
public static void main(String[] args)
{
System.out.println(‘“Hello’);
System.out.println(‘‘Good bye’’);
¥
by

D McGill

27

Bad Java Syntax

public class HelloWorld

{
System.out.println(‘‘Hello”’) ;

System.out.println(‘‘Good bye”’);

D McGill

28

Bad Java Syntax

public static void main(String[] args)
{
System.out.println(‘‘Hello”’) ;
System.out.println(‘‘Good bye’’);

D McGill

29

Bad Java Syntax

public static void main(String[] args)

{
public class HelloWorld

{
System.out.println(‘‘Hello”’);

System.out.println(“‘Good bye”’);

D McGill

30

Indentation

public class HelloWorld

{
public static void main(Stringl[] args)
{
System.out.println(‘‘Hello”’);
System.out.println(‘“‘Good bye”’);
b
b

D McGill

31

Indentation

public class HelloWorld

{

public static void main(String[] args)
{

System.out.println(‘‘Hello”’);

System.out.println(‘‘Good bye’’);

¥
¥

D McGill

32

Indentation

public class HelloWorld
{

public static void main(Stringl[] args)
{
System.out.println(‘‘Hello”’);
System.out.println(‘‘Good bye’’);

¥
}

D McGill

33

Indentation

public class HelloWorld{public static void main(St
ring[] args){System.out.println(‘‘Hello’’);System.ou
t.println(““Good bye’’);}}

D McGill

34

User Interface

e The user interface of a program is the way it interacts
with the user: keyboard/mouse/windows/text

e Graphical User Interface:

— Windows: buttons, text boxes, slidebars, graphics,
etc.
— Input with mouse and keyboard.

e Textual User Interface:

— Console window: plain text
— Input: keyboard only
— Output:

System.out.println(‘““text”’) ;

D McGill

35

Introduction to statements

e The print statement

System.out.println(string literal);
System.out.print(string_literal);

e String literals:

““(almost)any characters’

““This 1s a string literal”

‘“String literals can contaln almost any character,
CCa

€

(‘24,’

22

D McGill

36

Introduction to statements

e String concatenation:

string_literal + string literal
string_literal + number_literal

“This 1s a ’*+‘‘message”’
“This 1s a message’
‘““There are ’+70+‘‘ students in this class”

e String literals with numbers are not numbers: <17’ is
not the same as 17

C‘17,’ + C¢29,’
«“1729”
while

17 + 29

46

D McGill

37

Simple programs

// File: PrintingStuff.java
public class PrintingStuff

{
public static void main(String[] args)
{
System.out.println(““This trivial program j
System.out.println(‘“‘prints this text to a
System.out.println(‘“Window.”’) ;
¥
b

D McGill

38

Variables

e A variable is a memory location
e A variable can contain information

e A variable has a symbolic name

age

D McGill

39

Variables

age

20

D McGill

40

Variables

last_name

age

GPA

D McGill

41

Variables

last_name

age

GPA

"Smith"

20

3.5

D McGill

42

Variables

last_name

age

GPA

"Smith"

21

3.7

D McGill

43

Variables

last_name

age

GPA

"Smith"

21

3.7

String

int

float

D McGill

44

Variable declaration

e A variable declaration is a statement that declares tha
a variable is going to be used.

e A variable declaration goes inside some method
e A variable declaration has the form:

type 1identifier,
e Examples:

String last_name;
int age;
float GPA;

D McGill

45

Assignment

e An assignment is a statement that gives a value to a
variable

e An assignment goes inside some method
e An assignment has the form:

variable = value;

e |ts meaning it to put the value into the memory location
of the variable

e Examples:

last_name = ““Smith’’;
age = 20;

e Note that the following are incorrect:

20 = age;
“Smith’’ = last_name;

D McGill

46

Assignment

e The variable must be declared before being assigned a
value

String last_name;
last_name = ““Smith’’;

e But the following is wrong:

age = 20;
int age;

e The type of the value must be the same as the type of
the variable

last_name = 20; // Incorrect
age = “‘Smith’’; // Incorrect

D McGill

47

Variables and String expressions

e Variables can be used with concatenation in String
expressions

‘““your age 1s ’’tage
e is equivalent to
““your age 1is 19”

e if the variable age contains the value 19

D McGill

48

A simple program

public class PrintData

{

public static void main(String[] args)

{
String last_name;
int age;
last_name = ““‘Smith’’;
age = 20;
System.out.println(““Your last name is >’ + last_name);
System.out.println(“‘You are >’ + age + ‘“ years o0ld”’);

D McGill

49

Java Syntax

e Class definitions

public class {
// methods

¥

e Method definitions (inside a class)

// method header/signature
{

// statements

}

D McGill

50

Basic java programs

public class ClassName

{
public static void main(String[] args)
{
// Statements
b
by

D McGill

51

Statements

e Print statement
System.out.println(string_expression) ;
e Variable declaration
type 1identifier;
® Assignment

variable = value;

e Statements in a method are executed in sequential order
from top to bottom

D McGill

52

Assignment

® [n an assignment

variable = value;

e the variable must have been declared before

x = 7; // incorrect
int x;

e the type of the variable must match the type of the
value

int Xx;
x = 7, // incorrect

D McGill)

Sequential execution

public class (OrderTest

{

public static void main(Stringl[] args)

J
J
J

J

)
Il
o W NN oo

a = 8;
System.out.println(a);
System.out.println(b);

D McGill

54

Sequential execution

public class (OrderTest

{

public static void main(Stringl[] args)

J
J
J

J

o
Il
N 60 O T ©

b = 3;
System.out.println(a);
System.out.println(b);

D McGill

55

Sequential execution

public class (OrderTest

{

public static void main(Stringl[] args)

J
J
J

J

)
Il
o o1 N T

b = 3;
System.out.println(a);
System.out.println(b);

D McGill

56

Some syntactic shortcuts

e Several variables of the same type can be declared in
the same variable declaration:

type varl, var2, ..., varn,
e Examples:

int a;
int b;

Is equivalent to

int a, b;

D McGill

57

Some syntactic shortcuts

e A variable can be initialized when declared

int a;
a = 2;

Is equivalent to
int a = 2;
e But a variable cannot be redeclared, so

int b = 3;
int b = 2;

s incorrect, while the following is correct

int b = 3;
b = 2;

D McGill

58

User Interface

e Interaction between the user and some program

Textual Ul

— Output:
System.out.println(string expression);
— Input:

scanner.nextInt () ;
scanner.nextLine() ;

e Examples:
Scanner myScanner = new Scanner (System.in);

int n;
n = myScanner.nextInt();

B McGill N

User Interface

import java.utll.Scanner;
public class UserInputTest {
public static void main(Stringl[] args)

{

¥

Scanner myScanner = new Scanner (System.in);

String name;

int age;

System.out.print (“Enter your name: ’’);
name = myScanner.nextLine();
System.out.print (“Enter your age: ’’);
age = myScanner.nextInt();

System.out.println(‘“Your name is ’’ + name);

System.out.println(‘““You are >’ + age + ¢ years old”);

D McGill

60

D McGill

61

The end

D McGill

62

