Announcements

e Assignment 3 has been posted.

D McGill

Statements

e Variable declaration
type variable;

e Assignment
variable = expression,

e Method invocation

objectreference .methodname (parameters) ;
or
classname .methodname (parameters)

e Conditional
if (condition) block;
or
if (condition) blockl; else block2;

e [oop
while (condition) block;

D McGill

Program structure

e A java program is made of classes

e (Classes are made of

— attributes (variable declarations,) and
— methods

e Methods are made of statements

D McGill

Program structure

// File: A.java

public class A {
/] ...

b

// File: B.java

public class B {
/] ...

b

D McGill

Program structure

public class A {
int x;

void f()
{

/] ...
+

void g()

/] ...

D McGill

Program structure

public class A {
int x;

void f()
{
X++

¥

void g()
{
System.out.println(x);
X--;
}
¥

D McGill

Program structure

public class A {
int x;

X++:
void f()
{

X++

¥

void g()
{
System.out.println(x);
X--;
¥
¥

D McGill

Program structure

// File: A.java

public class A {
/] ...

b

// File: B.java

public class B {
/] ...

b

// File: C.java
public class C {
public static void main(Stringl[] args)
{
//. ..
b
b

D McGill

Classes

e (Classes have a dual role in Java:

— They are modules
— They are the data-type of objects

e [nformation in a Java program is represented by either

— Primitive data (e.g. numbers, booleans)
— Objects (composite data)

e An object is a composite piece of data which can be
applied certain actions or operations:

— An object is “made up” of other (simpler) pieces of
data (primitive or objects)

— An object is a group of data “glued’ toghether that
can be treated a s a unit, a single piece of data

— An object can “react” to operations we appy to it

D McGill

Objects and Classes

e A bank account has:

— owner
— balance

e Given a bank account we can:

— deposit
— withdraw

D McGill

10

Objects and Classes

accountl |
-
owner Jean
balance |$800.00

account2 1
4
owner Amy
balance $850.0

D McGill

11

Objects and Classes

e Objects have a type
e The type of an object is a class

e A class describes:

— the structure of its objects (attributes)
— and its operations (methods)

e A class is not the same as an object
e A class is like the "blueprint” of a family of objects

e An object is a particular instance of a class

D McGill

12

Objects and Classes

e To be able to use objects we need:

— Define some class or classes
— A mechanism to create objects of a defined class
— A mechanism to apply operations to these objects

D McGill

13

Class definition

public class Name

{
// Attribute definitions
/] ...
// Method definitions
/] ...
+

D McGill

14

Objects and Classes

e Defining a class:

public class BankAccount
{

String owner;

double balance;

void withdraw(double amount)

{
/] ...
¥

void deposit(double amount)

{
/] ...
¥

D McGill

15

Classes and Objects

e Declaring a variable:
type identifier,

e |t is the same for primitive types

Jdnt, age ;
type ident

as for non-primitive types (classes)

BankAccount, accountl;

type identifier

D McGill

Classes and Objects

e Declaring a variable does not create any objects

e To create objects we use the new operator
accountl = new BankAccount(‘‘Jean’’);

e To apply operations to objects we use the dot operator:
accountl.deposit (200.00) ;

e You cannot apply methods without first creating objects

D McGill

17

Classes and Objects

e To create objects we use the new operator

objectvariable = new ClassName (parameters) ;

e To apply operations to objects we use the dot operator:

objectvariable .method (parameters) ;

D McGill

18

Objects and Classes

@ccglrmt;

object

withdraw (150.00);
' H/_/

method parameters

e Applying a method to an object affects only the object

it is being applied to.

accountl | account2 I
() (
owner Jean owner Amy
balance |$650.00 balance | $850.0
\. J .

D McGill

19

Example: Stereo
public class Stereo {
// Attributes
float volume;
boolean radio_on;
boolean cd_in;
int current_song;

// Methods
void play_cd()
{

radio_on = false;
if (cd_in) {
current_song = 1;

}
/...
}
void set_volume(float v)
{
volume = v;
}
/...

¥

D McGill

20

Example: Stereo
public class Stereo {
// Attributes
float volume;
boolean radio_on;
boolean cd_in;
int current_song;

while (!radio_on) current_song++; //WRONG!

void play_cd()

{
radio_on = false;
if (cd_in) {
current_song = 1;
X
/] ...
+
void set_volume(float v)
{
volume = v;
}

¥

D McGill

21

Objects and classes

A class is a "type’ of objects. Objects are the values of
a class.

A class is defined by the attributes shared by all its
objects, and by its methods

The attributes of a class represent those characteristics
which all objects of the class have: e.g. every student
has a name and an id. Hence, name and id can be
attributes of a Student class.

The methods of a class represent the operations that
can be performed on objects of that class, they define
how an object in the class reacts to "messages’ sent
to it by other objects: e.g. the method play in the
Stereo class, defines how all stereo objects react to the
message play’.

D McGill

22

Objects and classes

e In analysis we should:

— Discover the classes of objects involved (physical or
abstract,) and

— |dentify the attributes of those classes.

e These translate into code as "class definitions"

public class ClassName

{

Attribute definitions

Method definitions

D McGill

23

Class definition structure

e Attribute definitions
type variable;

where type is either a primitive data type (int,
boolean, etc.) or the name of a user-defined class.

D McGill

24

Class definition structure (contd.)

e Method definitions

type method_name (list_of_parameters)

{

statements;

}

where type is either void (the method doesn't return
anything,) a primitive data type or a user-defined data
type. The list_of_parameters is of the form

typel argl, type2 arg2, ..., typen argn

e The parameters are the inputs to the method, to be
provided by other methods in a method call.

D McGill

25

Example

public class Student
{
String name;
long 1id;
String program;
String faculty;

void set_name(String s)

{
name = s;
b
void set_id(long num)
{
id = num;
by

// Continues below ...

D McGill

26

String get_name()

{
return name;
¥
long get_id()
{
return 1id;
b
void set_prog_and_faculty(String p,
String f)
{
program = p;
faculty = f1;
by

String get_program()
{ return program; }

String get_faculty()
{ return faculty; }
} // Class Student ends here.

D McGill

27

An object of the Student class

-
set_name I
E_id |

A

set_prog_and_faculty

Student's state

name
id
program

faculty

get_name

Adam Smith
119876543
[get_program |
Economics
Arts get_faculty
J

D McGill

28

Objects are not classes

A class can be thought of as a data type. Its values are
objects.

An object is an instance of a class.

An object has its own separate identity and its own
separate state.

The state of an object is the values currently assigned
to its attributes.

Each object is stored in different memory locations.

Pl
e
*

McGill

29

Individual identity of objects

Student

+name: String

+id: | ong

+program String
+faculty: String
+set_name(n:String): void
+set_id(n:long): void
+set_prog_and_faculty(p:String,f:String): void
+get_name(): String
+get_id(): long
+get_program(): String
+get_faculty(): String

dave \

name: "David Hilbert"
id: 1117123451
program: ™"

faculty: ™"

bert \ name: "Bertrand Russell"
id: 2618010101
program: ™
faculty: ™

D McGill

Dealing with objects

e To be able to use a class and its objects we must be
able to do three things:

— Create instances of a class (i.e. new objects)

— Access attributes of a given object (previously cre-
ated)

— Ask or tell a given object (previously created) to
perform an operation (by sending a message to it, i.e.
applying a method.)

D McGill

31

Creating objects

e To create objects of a given class:
First: Declare a variable of that type:
class_name variable;

Second: Assign the variable a new instance, using the
new keyword:

variable = new class_name () ;

e Example

Student dave;

dave = new Student();
e The two can be done in one line:

Student bert = new Student();

D McGill

32

Accessing attributes

e The attributes of an object can be accessed directly
using the dot operator:

variable .attribute

_..but only if the attribute exists in the class of the
variable.

e Example:

dave.name = ‘David Hilbert’’;
dave.1id = 1117123451;
System.out.println(dave.name) ;
System.out.println(dave.id);

bert.name = ‘‘Bertrand Russell’’;
bert.id = 2618010101;
System.out.println(bert.name) ;
System.out.println(bert.id);

D McGill

33

Sending messages to objects

e To interact with an object we send it a message by
calling, or invoking one its methods.

e Calling a method is done by using the dot operator, and
passing parameters or arguments (if any):

variable .method_name (arguments)

where the type of variable is a class which has
a method called method_name, and arguments is a
coma-separated list of values whose type matches those
of the method’s parameters.

D McGill

34

Sending messages (contd.)

e For example:

bert.set_prog_and_faculty(‘‘Philosophy’’, ‘‘Arts’’);

dave.set_id (009876543) ;

e A method call
a.m(b, c, d);

could be interpreted as “sending the message m to the
object a with arguments b, ¢, and d.”

D McGill

35

Example

public class BankAccount

{

String owner;
double balance;

void withdraw(double amount)

{

if (amount <= balance)
balance = balance - amount;

void deposit(double amount)

{

balance = balance + amount;

D McGill

36

Example

public class BankExample {
public static void main(String[] args)
{
BankAccount al;
double x;

al = new BankAccount();
al.owner = ‘““John’’;
al.balance = 0.0;
al.deposit (200.0);

x = al.balance;
System.out.println(x) ;

D McGill

37

Example

public class BankExample {
public static void main(String[] args)
{
BankAccount al;
double x;

al.owner = ‘““John’’;
al.balance = 0.0;
al.deposit (200.0);

x = al.balance;
System.out.println(x);

D McGill

38

Example

public class BankExample {
public static void main(Stringl]
{
BankAccount al, a2;
double x, y;

al = new BankAccount();
al.owner = ‘““John’’;
al.balance = 0.0;

a2 = new BankAccount();
a2.owner = ‘“Marie’’;
a2.balance = 100.0;
al.deposit(200.0);
a2.withdraw(50.0);

x = al.balance;

y = a2.balance;
System.out.println(x);
System.out.println(y);

args)

D McGill

39

Method parameters

The following class

class SomeClass {
void someMethod(int parameter)
{
//...do something
b
b

is not the same as

class SomeClass {
void someMethod()
{
int parameter;
//...do something

¥
}

D McGill

40

Method parameters

e Parameters are information provided to a method by
another method somewhere else in the program.

someClass obj1i;
objl = new SomeClass();
objl.someMethod(73); //This works with the first

e |nputs are not only given by the user. The input to a
method (its parameters) are provided by other methods.

D McGill

41

Method parameters

public class BankAccount

{

String owner;
double balance;

void withdraw(double amount)

{

if (amount <= balance)
balance = balance - amount;

void deposit ()

{
double amount = Keyboard.readDouble();
balance = balance + amount;

D McGill

42

Example

// in a file called Student.java
public class Student
{

String name;

long 1id;

String program;

String faculty;

void set_name(String s)

{
name = s;
Iy
void set_id(long num)
{
1d = num;
¥

// Continues below ...

D McGill

43

String get_name()

{
return name;
¥
long get_id()
{
return 1id;
b
void set_prog_and_faculty(String p,
String f)
{
program = p;
faculty = f1;
by

String get_program()
{ return program; }

String get_faculty()
{ return faculty; }
} // Class Student ends here.

D McGill

44

Example

Student letterman, jane;
String p, q;
boolean classmates;

letterman = new Student() ;
jane = new Student(); // Different studen

letterman.set_name (‘David’) ;
letterman.set_id (000000011) ;

jane.set_name(‘‘Jane’’) ;
jane.set_1d(9867554) ;

letterman.set_prog_and_faculty(‘Broadcasting’’,
“Medicine”’) ;

jane.set_prog_and_faculty(‘“Physics’’, ‘‘Science’’.

p = letterman.get_program() ;
q = jane.get_program();

if (p.equals(qg)) classmates = true; else class

D McGill

45

Example

| etter man

j ane

cl assnat es

Y

q

D McGill

46

| etter man
j ane

cl assmat es
P

q

Example

N

St udent
N
name
id
program
faculty
\. J

D McGill

47

| ett er man
j ane

cl assmat es
P

q

Example

e

St udent
N
name
id
program
faculty
\. J
St udent
[A
name
i d
program
faculty
\. J

D McGill

48

| ett er man
j ane

cl assmat es
P

q

Example

e

St udent
N
nane |" Davi d"
id
program
faculty
\. J
St udent
[A
name
i d
program
faculty
\. J

D McGill

49

| ett er man
j ane

cl assmat es
P

q

Example

e

St udent
N
nane |" Davi d"
i d| 00000001l
program
faculty
\. J
St udent
[A
name
i d
program
faculty
\. J

D McGill

50

| ett er man
j ane

cl assmat es
P

q

Example

e

St udent
N
nane |" Davi d"
i d| 00000001l
program
faculty
\. J
St udent
[A
nane |[Jane
i d
program
faculty
\. J

D McGill

51

letterman
jane

classmates

Example

e

Student
N
name | "David"
id | 00000001l
program
faculty
. J
Student
4)
name [Jane
id 19867554
program
faculty
_ J

D McGill

52

Example

letterman
jane — \' Student
N
classmates name | "David"
id | 00000001l
Y program | Boadcasting
faculty | Medicine
q . J
Student
4)
name [Jane
id |9867554
program
faculty
_ J
D McGill

53

Example

letterman
jane — \' Student
N
classmates name | "David"
id | 00000001l
Y program | Boadcasting
faculty | Medicine
q . J
Student
4)
name [Jane
id 19867554
program |Physics
faculty [Science
_ J
D McGill

54

Example

letterman
jane — \' Student
N
classmates name | "David"
id | 00000001l
p |Broadcasting program | Boadcasting
faculty Medicine
q _ Y,
Student
4 N\
name |Jane
id |9867554
program |Physics
faculty [Science
_ J
D McGill

55

Example

letterman
jane — \' Student
N
classmates name | "David"
id | 00000001l
p |Broadcasting program | Boadcasting
faculty Medicine
g |Physics . J
Student
4 N\
name |Jane
id |9867554
program |Physics
faculty [Science
_ J
D McGill

56

Example

letterman
jane — \' Student
N
classmates false name | "David"
id | 00000001l
p |Broadcasting program | Boadcasting
faculty Medicine
g |Physics . J
Student
4 N\
name |Jane
id |9867554
program |Physics
faculty [Science
_ J
D McGill

57

Method calls in context

e There are two forms of method calls:
— Method call as a statement

— Method call as an expression

e A method call is a statement if its return type is void,
otherwise it is an expression.

e If a method call is an expression, it must appear in a
context that allows expressions, such as:
A. the right hand-side of an assignment:

long n = dave.get_id();
String s = dave.get_program() ;

B. ..or, the argument of another method:

System.out.println(dave.get_id());
bert.set_id(dave.get_id());

e But the types must match!

D McGill

58

Methods as functions

e Methods can be viewed as a “black box" with inputs and

outputs:

argl ———>
ar g2 ——>

et hod > return val ue

ar gn ——>

e There are three kinds of methods:

— Mutators: Modify the state of objects,
— Accessors: Return information about the object,
— Constructors: Initialize a newly created object.

D McGill

59

Method types

e Mutators are usually void methods, which do not return
anything, but modify the state of the object:

argl ———>
arg2 ———>

argn ———>

met hod

e Accessor methods may only return values without ex-
pecting any arguments as input:

nmet hod

——> return val ue

D McGill

60

The end

D McGill

61

