Objects are “first class citizens”

e Since classes are data types and objects are their values,
then we can do with objects the “same” things that we
can do with primitive values, namely:

— We can assign objects to variables,
— We can pass objects as arguments to methods, and
— Methods can return objects as their result.

B McGill 1

Objects are "first class citizens"

(contd.)

e Variables, attributes can be declared as having a class
for its type:

Stereo mystereo, yourstereo;

e Variables whose type is a class can be assigned objects
of that class:

mystereo = new Stereo();
yourstereo = mystereo;

e Objects can be passed as parameters; if there is a
method void m(Stereo s) {...} in some class C,
then we can do:

C x = new C();
x.m(mystereo) ;
x.m(yourstereo) ;
x.m(new Stereo());

D McGill

Objects are "first class citizens"

(contd.)

e Objects can be returned as values; if there is a method

Stereo p()
{

return new Stereo();

in some class C, then we can do:

C x = new CQ);
mystereo = x.p();

...provided that the variable which is being assigned is of
the same type.

D McGill

Objects as first class values
e Objects can be attibutes of other objects

public class Rabbit {
void jump() { ... }
b
public class Cage {
Rabbit my_rabbit;
void put(Rabbit a)
{
my_rabbit = a;
by
Rabbit get ()
{
return my_rabbit;
by
by

...elsewhere. ..

Rabbit bugs = new Rabbit();
Cage ¢ = new Cage();

c.put (bugs) ;

Rabbit wester = c.get();

D McGill

Classes are data types

public class Theater {
void play(Movie m)
{
m.print () ;
b
b

public class MovieApplication3 {

public static void main(String[] args)

{
Movie ml;
Theater t = new Theater();
ml = new Movie(‘‘Les Invasions barbares’’,

“Denys Arcand”’);

t.play(mil);

D McGill

Example
public class A {

int k;
AQ) // Constructor
{
k =1;
by
b
public class B {
A x; // Objects can be attributes;
void m()
{
x = new AQ);
by
void p(A u) // Parameters may have a class
{ // for type
x = u; // The object u is created
by // elsewhere
ArQ)
{
return Xx;
by
by

D McGill

Example (contd.)

public class C {
public static void main(String[] args)

{
A f,g; // f and g are initialized to null

B h; // h is initialized to null

f = new AQ);

// Here f.k is 1

f.k = 5;

h = new B(Q);

h.m(Q); // assigns a new A to h.x, so ...

// Here h.x.k is 1

h.p(f); // object f is passed as argument
// Here h.x is f, and therefore h.x.k is 5
// Also, g is still null, so there is no g.k
g =h.r();

// Now g is the same as h.x, which is f,

// ...s0 g.k is b

D McGill

Example (contd.)

The variables are initialized to null
main frame

f | null
g | null

h | null

D McGill

Example (contd.)

fis assigned a new A object

main frame A
f ()
k 1
g | null
h | null
_ J/

D McGill

Example (contd.)

The statement f.k=25; is executed
main frame
f 4
g | null
h | null
_
B McGill

10

Example (contd.)

h is assigned a new B

main frame A
()
f
5
g | null
h
\. J
B
()
null
\ J
D McGill

11

Example (contd.)

We call h.m() which creates a frame for m
with no arguments

main frame A
f (
k 5
g | null
h
_
m frame B
-
X | null

this /—>

D McGill

Example (contd.)

The body of m is executed. It consists of the single statement

x = new A();
which creates a new A object and assigns it to this.x
main frame A
f)
null
J
m frame B />
N
this ")
 McGill

13

Example (contd.)

After returning from m, its frame gets discarded, and h.x.k is1

main frame A
f ()
Kk 5
g | null
h
. J (
B
. \/>
X —] _
_ J

D McGill

Example (contd.)

Computation in main continues with h.p(f);

A frame for p is created, assigning f to its parameter u

main frame A
4 N
f k
g | null
h
_ J
p frame B
e N
N X
this —
Y y,
T McGill

15

Example (contd.)

In this frame, the body of p is executed.
The body of pis X=u; which is the same as this.x = u;

main frame A
f ()
Kk 5
g | null
h
_ J

p frame \ B

this

D McGill

Example (contd.)

When p ends, its frame is discarded.

The other A object that has no references to it, is also discarded.

main frame A
f ()
k 5
g | null
h
L J

D McGill

17

Example (contd.)

Computation is resumed with the next instruction of the main: g = h.r();
So the right-hand side of the assignment, h.r() is evaluated. So a frame for

r is created.
main frame A
f ()
Kk 5
g | null
h
\. J

this

D McGill

18

Example (contd.)

The body of r is executed in this frame. Its body is return X;
which is the same as return this.x; But this.x

is the same as the pointer to f, so this pointer is returned,
discarding the frame for r, and performing the pending assignment
to g, which is now equivalentto: g=h.x; org=*;

main frame A
f)
k 5
g
h
J

D McGill

19

Encapsulation and visibility

e Abstraction and visibility

e Purpose of encapsulation:

— Hiding the state of an object, (part of) the structure
of an object (attributes and/or methods,) or the
internal representation of data, so that a client
doesn't have to know about the internals of an object
(abstraction.)

— Security: maintaining the integrity of data. Enforcing
limited visibility so that clients cannot “corrupt” the
state of an object, so that only the class of the object
can change the object’s state.

e Visibility modifiers (for attributes and methods):
public, private and protected.

e Visibility modifiers are orthogonal (independent) of
whether the attribute or method is static or not. So
they can be combined in any way.

D McGill

20

Encapsulation to enforce integrity

public class BankAccount
{
public double balance;
public BankAccount() { balance = 0.0; }
public void deposit(double amount)
{
if (amount > 0.0)
balance = balance + amount;
¥
public void widthdraw(double amount)
{
if (amount <= balance)
balance = balance - amount;

D McGill

21

Encapsulation to enforce integrity

public class BankingApplication
{

public static void main(Stringl[] args)
{
BankAccount b;
b = new BankAccount() ;
b.deposit(500.0);
b.balance = b.balance - 700.0; // OK
}
}

D McGill

22

Encapsulation to enforce integrity

public class BankAccount
{
private double balance;
public BankAccount() { balance = 0.0; }
public void deposit(double amount)
{
if (amount > 0.0)
balance = balance + amount;
by
public void widthdraw(double amount)
{
if (amount <= balance)
balance = balance - amount;

D McGill

23

Encapsulation to enforce integrity

public class BankingApplication
{

public static void main(Stringl[] args)
{
BankAccount b;
b = new BankAccount() ;
b.deposit(500.0);
b.balance = b.balance - 700.0; // ERROR
}
}

D McGill

24

Encapsulation to enforce integrity

public class BankingApplication
{

public static void main(Stringl[] args)
{
BankAccount b;
b = new BankAccount() ;
b.deposit(500.0);
b.withdraw(700.0); // OK
+
+

D McGill

25

Privacy is relative

public class BankAccount
{
private double balance;
public BankAccount() { balance = 0.0; }
public void deposit(double amount)
{
if (amount > 0.0)
balance = balance + amount;

¥

public void widthdraw(double amount)
{
if (amount <= balance)
balance = balance - amount;

}

public void transfer (BankAccount other)

{
this.balance = this.balance + other.balance;
other.balance = 0.0;

D McGill

26

Privacy is relative

public class BankingApplication
{

public static void main(Stringl[] args)
{

BankAccount bl, b2;

bl = new BankAccount();

b2 = new BankAccount();

b1.deposit (500.0);

b2.transfer(bl);

D McGill

The end

D McGill

28

