COMP-202 Midterm exam

1 Multiple Choice

Question 1.1 The Java compiler translates Java source code into a special
representation called

a) bitcode

b) bytecode

c) Java hex code

d) machine code

e) none of the above

Solution b)

Question 1.2 343 in decimal (base 10) is equivalent to
a) 101010111 in binary (base 2)
b) 101001011 in binary (base 2)
c) 101010101 in binary (base 2)
d) 101011111 in binary (base 2)
e) None of the above

Solution a)

Explanation
decimal(101010111) = 1-2240-274+1-2640-254+1-2*4+0-2% +1.22 4+1.2' 41.2°
= 256+64+16+4+2+1
= 343

Question 1.3 Programs developed by you in Assignments 1-3 typically com-
piled (give the most appropriate answer):

a) in approximately one second or less

b) in about fifteen to twenty seconds

c) approximately a minute

d) in an amount of time that varied considerably from at least a second to half a minute.
e) in several seconds and inversely proportional to the number of compilation errors

Question 1.4 What will be the values of p, q, r and s after executing the
following program fragment?

int p = 4,9 = 7,1,s;

r = p;
P=q;
s = Ps
r=1r - 1;
p=q+1;
q=9-1;

)

oo N
~ W W A
00 T ~1 W =3

’

4
4
8,
6
8

/a0 T
_

’

@

?

Solution c)

Explanation Trace the values of the variables. The table below shows the
values of the variables after executing the corresponding statement:

| After statement |plalr]s]|
int p=4,9="7,r,s; |4 |7 |- |-
r =p; 4|74 -
P =9 7174 -
s = p; 717147
r=r - 1; 717137
p=9q+1; 87|37
q=9q-1; 8|16 (3|7

Question 1.5 Consider the following outline of a nested if-else structure
which has more if clauses than else clauses. Which of the statements
below is true regarding this structure?

if (conditionl)
if (condition2)
statementl;
else statement2;

a) syntactically it is invalid to have more if clauses than else clauses

b) statement2 will only execute if conditionl is false and condition2 is false

c) statement2 will only execute if conditionl is true and condition?2 is false

d) statement2 will only execute if conditionl is false, it does not matter what condition2 is
e) statement2 will never execute

Solution c)

Explanation When an if-else statement does not use the brackets { and },
the else clause corresponds to the closest if, regardless of indentation.
Hence the program above is the same as:

if (conditionl) {
if (condition2) {
statementi;

}

else {
statement?2;

}

Hence, the only way statement?2 is executed is if conditionl is true and
condition2 is false.

Question 1.6 What will be the value of i after executing this code?

boolean x = false, y = true;
int i = 0;

if (x) {
i=1;
x = false;
}
else {
i=2;
if (y) {
y = false;
i++;
}
else {

i=1i+2;

Q.0 T
_
B W= O

@

Solution d)

Explanation Since x is initialized to false, the first condition is not satisfied and
therefore the else clause is executed. This means that i is assigned the
value 2. Then the condition y is tested, and this is true, so the statements
y = false; i++; are executed, and the else clause is not. This means
that i is assigned the value 3.

Question 1.7 What will be the value of s after executing the following program
fragment?

int s = 1, k = 13;
while (k > 1) {
if (k % 3 ==0) {
s =8 + k;

k-3

a) 1
b) 13
c) 3
d) 32
e) 31

Solution e)

Explanation Trace the execution of the program. The following table has the
values of the variables (as well as the loop’s condition and the expression
in the conditional,) at thebeginning of each iteration:

| Tteration | k [s [k>1]k%3==0 |

0 (before the loop) | 13 | 1 | true false
1 12 | 1 true true
2 11 | 13 | true false
3 10 | 13 | true false
4 9 | 13 | true true
5 8 | 22 | true false
6 7 | 22 | true false
7 6 | 22 | true true
8 5 | 28 | true false
9 4 | 28 | true false
10 3 | 28 | true true
11 2 | 31 | true false
12 1 | 31 | false

What this loop is doing is adding the natural numbers less of equal to 13
which are divisible by 3 (proceeding backwards,) this is, 12+9+6-+3 = 30,
and adding 1 to this result (since s starts as 1.)

Question 1.8 What will be the value of ¢ in terms of the input in this program
fragment?

int a,b,c,p;
a = Keyboard.readInt();

b = Keyboard.readInt();
c = 0;
p=1
while (p < b) {
P=p *a;
c++;
}

System.out.println(c);

a) cisa’ (ato the power b)

b) cis b* (b to the power a)

c) cis floor(log,b) (the largest integer smaller than the logarithm of b to the base a)
d) cis floor(logpa) (the largest integer smaller than the logarithm of a to the base b)
e) cis ceil(log,b) (the smallest integer larger than the logarithm of b to the base a)

Note: the logarithm of x to the base y is the number z such that y to the
power z is x.

Solution e)

Explanation The variable ¢ starts being 0 and each iteration is incremented
by 1, so its value is equal to the number of times that the loop is executed.
The loop stops whenever p > b. The variable p starts being 1, and in each
iteration it is multiplied by a, so p is some power of a, namely p = a°:

La[blclp |
any |any | 0 | 1
1 |1-a=a
2 |a-a=a
3|a?-a=4d°
4 | a®-a=d*
5 | at-a=a
n|a*t-a=a"

Hence, p = a°, and saying that the loop stops when p > b is the same
as saying that it stops when a® > b, which is the same as saying that it
stops when ¢ > log,b. Hence c is at least log,b. Since c is an integer, and
the loop stops as soon as ¢ > log,b, then ¢ must be the smallest integer
greater or equal to the logarithm of b in base a.

Here is a sample run: Suppose that a is 2 and b is 35.

(alb[c]p | p<b |
213|101 true
111-2=2 true
212.-2=22=4 true
3122.2=23=8 | true
4]23.2=2*=16 | true
5] 2%.2=25=232] true
6| 2°-2=26 =064 | false

Since we know that 2% = 32 and 2% = 64, which is the same as saying
that log232 = 5 and log264 = 6 then we can conclude that 5 < log235 < 6
(because 32 < 35 < 64.) And since ¢ ends up being 6, we have that it
is indeed a number greater than the logarithm of 35 in base 2, and the
smallest.

2 Short Problems

Question 2.1 Using the following Die class:

public class Die
{
private int numFaces; // number of sides on the die
private int faceValue; // current value showing on the die
public Die()
{
numFaces = 6;
faceValue = 1;
}
public int roll()
{
faceValue = (int) (Math.random() * numFaces) + 1;
return faceValue;
}
public int getFaceValue()
{
return faceValue;
}
}

Write a method that will use two Die, roll them 100 times, and return the
number of times that a total of 7 or 11 is rolled on the two Die.

Solution

public int roll7or11()

{
Die d1 = new Die();
Die d2 = new Die();
int j, num = 0, sum = O;
j=1;
while (j <= 100) {
sum = d1.roll1() + d2.roll();
if (sum == 7 || sum == 11) {
num++;
}
jt+ts
}
return num;
}

Question 2.2 A data verification loop is a loop that prints a line asking the
user to input a value within a restricted range repeatedly until the user

has input a value within the requested range. Write a data verification
loop that inputs an int value x within the range 0 and 100. Assume
csl.Keyboard has been imported.

Solution

int x = -1;

while (x < 0 || x > 100) {
System.out.println(‘“Enter an int value between O and 100”’);
x = Keyboard.readInt();

}

Question 2.3 Does this fragment stop? What will it print out?

int j =9, k = 2;
while (j > k) {
if (3 -k h2==1{
j+ts
}
else {
i=3-2
k=k + 1;
}
System.out.println(j + "," + k);
¥

Solution Yes, it does stop. It will print:

-
o
N

OO ~N O 0 N O
OO W W

. W

-

.- .

-

Question 2.4 What does the following program print?

class A
{
void f(int n)
{
int i = 0;
while (i < n) {
System.out.print (i) ;
i++;

}
System.out.println();

}
}
class B
{
public static void main(String[] args)
{
A obj = new AQ);
int i = 1;
while (i < 6) {
obj.f(1);
it++;
}
}
}

Solution It will print

0

01
012
0123
01234

Explanation The method f in class A prints the digits from 0 up to n-1, where

3

n is its parameter. The main program creates an instance of class A, called
obj, and applies to it the £ method 5 times. Each time it passes as param-
eter the value of the local variable i (local to the main method.) Hence,
each iteration of the main loop results in invoking obj.f (1), obj.£(2),
obj.f(3), obj.f(4), and obj.f (5), each of which prints each of the lines
above.

Programming

Question 3.1 A common way to compute the square root of a number is to

use the following method: suppose that we want to compute the square
root of x. We start by assuming that the square root of x (say y) is 1, and
proceed to repeatedly improve the approximation by computing a new
value for y, taking the average between the old value of y and x divided
by the old value of y. For example if x is 2, the computation proceeds as
follows:

Guess # Guess (y) Quotient (x/y) Average ((y+x/y)/2)

1 1 2/1=2 (2+1)/2=1.5

2 1.5 2/1.5=1.333... (1.54+1.333...) /2=1.4167...

3 1.4167... 2/1.4167..=1.4118... (1.4167...+1.4118...)/2=1.4142...
4 1.4142...

The exact solution is reached then the square of the guess is exactly the
same as x, but for many numbers, this might never be the case and the
process can continue ad infinitum. Therefore we need to stop when we
have an approximation which we consider "close enough" with respect to
some "tolerance" value, usually a very small number. The computed guess
is close enough when the absolute difference between x and the square of
the guess is less than the tolerance.

Write a program that asks the user to enter a number x and a tolerance
epsilon, and prints the square root of x computed using this algorithm.
(Note: Do not use the Math.sqrt method or the Math.abs method.)

Solution

import csl.Keyboard;
public class SquareRoots {
public static void main(String[] args)
{
double x, guess, tolerance, diff;
boolean good_enough;

System.out.print ("Enter a number = ");

x = Keyboard.readDouble();
System.out.print ("Enter a tolerance = ");
tolerance = Keyboard.readDouble();

good_enough = false;

guess = 1;

while (!good_enough) {
guess = (guess + (x / guess)) / 2;
diff = guess * guess - Xx;
if (diff < 0) diff = -diff;
good_enough = (diff <= tolerance);

}

System.out.println("Result = "+guess);

}
}

Question 3.2 In this problem you are asked to write a simple class to represent

elevators. An elevator has a current floor, a number of floors, a current
number of passengers, and a maximum capacity of passengers.

An elevator :

e is constructed by specifying;:

— the total number of floors in the building
— the maximum elevator capacity

that the elevator initially doesn’t have any passengers,

and that the elevator is initially located on the bottom floor

e can move one floor up if it not on the top floor

e can move one floor down if it is not on the bottom floor

e can accept a certain number of passengers (up to its maximum ca-
pacity)

e can drop off a certain number of passengers (no more then it actually
has)

e can tell us which floor it’s on.
Solution

public class Elevator
{
int currentFloor;
int numFloors;
int currentPassengers;
int maxPassengers;
public Elevator(int maxFloors, int capacity)

{
numFloors = maxFloors;
maxPassengers = capacity;
currentFloor = 1;
currentPassengers = 0;
}
public void moveUp()
{
if (currentFloor < numFloors)
currentFloor++;
}
public void moveDown()
{
if (currentFloor > 0)
currentFloor--;
}

//returns true if it accepted some passengers

public boolean acceptPassengers(int num)

{
boolean result = true;
int difference = maxPassengers - currentPassengers;
if (difference > 0 && num > 0)

10

if (num < difference)
currentPassengers += num;
else
currentPassengers += difference;
else
result = false;
return result;
}
//returns true if it dropped off passengers
public boolean dropOffPassengers(int num)
{
boolean result = true;
if (num <= currentPassengers && num > 0)
currentPassengers -= num;
else
if (num > currentPassengers)
currentPassengers = 0;
else
result = false;
return result;

}
public int getCurrentFloor ()
{
return currentFloor;
}

11

