Announcements

e \Windows and Unix machines at the Trottier lab

e Account creation only for Unix

D McGill



Road map

Problem
Solving

D McGill



Road map

Computers

Programming

Problem
Solving

-

Information

~

Algorithms

D McGill



Road map

Software

Hardware

Computers

Programming

Problem
Solving

-

Information

~

Algorithms

D McGill



Road map

Software

Hardware

Computers

Data representation

Programming

Problem
Solving

-

N

Information

~

Algorithms

D McGill



Road map

Compilers/
Interpreters — Software
Hardware Computers

Data representation

N

Programming

Problem
Solving

-

Information

~

Algorithms

D McGill



Road map

Compilers/
Interpreters —~ Software
Hardware Computers

Data representation

Programming

Problem
Solving

-

N

Information

~

Algorithms

Analysis

Design

Implementation

D McGill



Road map

Compilers/
Interpreters —~ Software
Hardware Computers

Data representation

Programming

Problem
Solving

-

N

Information

~

Algorithms

Analysis

Design

Implementation

D McGill



Compilers/
Interpreters —~ Software
Hardware Computers

Data representation

Programming Languages

|

Programming

Problem
Solving

-

N

Information

~

Algorithms

Analysis

Design

Implementation

D McGill




Programming Languages

e Machine language (binary, processor dependent)

e Assembly language (textual, low-level, processor depen-

dent)

e High-level languages (textual, abstract, processor inde-
pendent)

— There are many high-level languages: Java, C, C++,
C#, ML, Haskell, Scheme, Prolog, Python, Perl, etc.
— Different types of languages:
x |mperative
- Procedural
- Object Oriented
- Concurrent
x Declarative:
- Functional
- Logic
*x Mixed

D McGill .



Executing programs
e Editing

e Compilation/Interpretation

— (Native) Compilation: Translation to machine lan-
guage + Execution
x Advantages: Fast, processor specific code is gener-
ated
x Disadvantage: Needs a compiler for each type of
processor; generates a different target file for each
type of processor
— Interpretation: Direct execution
x Advantages: Execution is processor independent.
Does not generate a different target file for each
possible processor (portability)
* Disadvantage: Slow execution due to overhead of
Interpretation.
— Combined: Translation to bytecode + interpretation
of bytecode
x Best of both worlds: Only one file is generated
(portable) and it is faster to execute than direct
interpretation (but slower than native compilation.)

D McGill

11



Languages

e Elements of a language

— Alphabet
— Syntax (grammar)
— Semantics (meaning)

e Elements of Java:

— Alphabet of Java: ASCII
— Syntax: 'constructs’

x Class definitions

* Method definitions

*x Statements

x others
— Semantics: computation

D McGill

12



Errors

e FErrors:

— Compile-time errors
— Run-time errors

x Exceptions

x Logical

D McGill

13



Errors

D McGill

14



Basic Java Syntax

e A Java program is made up of one or more class defini-
tions

e A class definition is made up of zero or more method
definitions

e A method definition is made up of zero or more state-
ments and variable declarations

e Roles:

— C(lasses: Modules and Types of objects
— Methods: procedures, functions, algorithms
— Statements: instructions

D McGill

15



Basic Java Syntax

public class ClassName

{
// Body of ClassName

/] ...
// List of method definitions

D McGill

16



Basic Java Syntax

public class HelloWorld

{
// Body of ClassName

/] ...
// List of method definitions

D McGill

17



Basic Java Syntax

public class Classname

{
// method header
{
// method body: list of statements
Iy
by

D McGill

18



Basic Java Syntax

public class HelloWorld

{
public static void main(String[] args)
{
System.out.println(‘Hello’);
System.out.println(‘‘Good bye’’);
¥
by

D McGill

19



Basic Java Syntax

public class HelloWorld

{
public static void main(Stringl[] args)
{
by

by

D McGill

20



Bad Java Syntax

public class HelloWorld

{
System.out.println(‘‘Hello”’) ;

System.out.println(‘‘Good bye”’);

D McGill

21



Bad Java Syntax

public static void main(String[] args)
{
System.out.println(‘‘Hello”’) ;
System.out.println(‘‘Good bye”’) ;

D McGill

22



Bad Java Syntax

public static void main(String[] args)

{
public class HelloWorld

{
System.out.println(‘‘Hello”’);

System.out.println(“‘Good bye”’);

D McGill

23



Indentation

public class HelloWorld

{
public static void main(Stringl[] args)
{
System.out.println(‘‘Hello”’);
System.out.println(‘‘Good bye’’);
b
b

D McGill

24



Indentation

public class HelloWorld

{

public static void main(String[] args)
{

System.out.println(‘‘Hello”’);

System.out.println(‘‘Good bye’’);

¥
¥

D McGill

25



Indentation

public class HelloWorld
{

public static void main(Stringl[] args)
{
System.out.println(‘‘Hello”’);
System.out.println(‘‘Good bye’’);

¥
}

D McGill

26



Indentation

public class HelloWorld{public static void main(St
ring[] args){System.out.println(‘“Hello’’);System.ou
t.println(““Good bye’’);}}

D McGill

27



User Interface

e The user interface of a program is the way it interacts
with the user: keyboard/mouse/windows/text

e Graphical User Interface:

— Windows: buttons, text boxes, slidebars, graphics,
etc.
— Input with mouse and keyboard.

e Textual User Interface:

— Console window: plain text
— Input: keyboard only
— Output:

System.out.println(‘““text”) ;

D McGill

28



Introduction to statements

e The print statement

System.out.println(string_literal);
System.out.print(string_literal);

e String literals:

““(almost)any characters’

“This 1s a string literal”

‘“String literals can contaln almost any character,
CCa

€

(‘24,’

22

D McGill

29



Introduction to statements

e String concatenation:

string_literal + string literal
string_literal + number_literal

“This 1s a ’+‘‘message”’
“This 1s a message’
‘““There are ’+70+‘‘ students 1in this class”

e String literals with numbers are not numbers: 17’ is
not the same as 17

C‘17,’ + C¢29,’
«“1729”
while

17 + 29

46

D McGill

30



Simple programs

// File: PrintingStuff.java
public class PrintingStuff

{
public static void main(String[] args)
{
System.out.println(““This trivial program j
System.out.println(‘“‘prints this text to a
System.out.println(‘“Window.”’) ;
¥
b

D McGill

31



Variables

e A variable is a memory location
e A variable can contain information

e A variable has a symbolic name

age

D McGill

32



Variables

age

20

D McGill

33



Variables

last_name

age

GPA

D McGill

34



Variables

last_name

age

GPA

"Smith"

20

3.5

D McGill

35



Variables

last_name

age

GPA

"Smith"

21

3.7

D McGill

36



Variables

last_name

age

GPA

"Smith"

21

3.7

String

int

float

D McGill

37



Variable declaration

e A variable declaration is a statement that declares tha
a variable is going to be used.

e A variable declaration goes inside some method
e A variable declaration has the form:

type 1identifier,
e Examples:

String last_name;
int age;
float GPA;

D McGill

38



Assignment

e An assignment is a statement that gives a value to a
variable

e An assignment goes inside some method
e An assignment has the form:

variable = value;

e |ts meaning it to put the value into the memory location
of the variable

e Examples:

last_name = ““Smith’’;
age = 20;

e Note that the following are incorrect:

20 = age;
“Smith’’ = last_name;

D McGill

39



Assignment

e The variable must be declared before being assigned a
value

String last_name;
last_name = ““Smith’’;

e But the following is wrong:

age = 20;
int age;

e The type of the value must be the same as the type of
the variable

last_name = 20; // Incorrect
age = “‘Smith’’; // Incorrect

D McGill

40



Variables and String expressions

e Variables can be used with concatenation in String
expressions

‘““your age 1s ’’tage
e is equivalent to
““your age 1is 19”

e if the variable age contains the value 19

D McGill

41



A simple program

public class PrintData

{

public static void main(String[] args)

{
String last_name;
int age;
last_name = ““‘Smith’’;
age = 20;
System.out.println(““Your last name is >’ + last_name);
System.out.println(“‘You are >’ + age + ‘“ years o0ld”’);

D McGill

42



