Announcements

e Assignment 5 has been posted

D McGill

Review

e Variables whose type is a class are references

e Alias of a variable is a different variable which refers to
the same object

e Aliases can be used to represent shared refer-
ences/shared information

e Question: When are two references (of the same type)
equivalent?

Pointer equality
Shallow
Deep

e Reference equality Structural equality {

D McGill

Review

e Two references are pointer-equal if they are aliases (i.e.
they refer to the same object)

e Two references are structurally-equal if the attributes of
the objects they refer to are equal

— Two references are shallowly-equal if the attributes
of the objects they refer to are pointer-equal
x Two references are deeply-equal if the attributes of
the objects they refer to are structurally-equal

e Copying or cloning: creating a different (i.e. not pointer-
equal) object which is structurally-equal to the original

Shallow

Deep
— A copy is shallow if it is shallowly-equal to the original

— A copy is deep if it is deeply-equal to the original

— Copy

D McGill 3

Parameter passing by reference vs. by
value

e A programming language that has methods, procedures,
and/or functions can pass arguments to the function in
several ways:

— Passing parameters by value: The arguments received
by the function are a copy (usually shallow) of the
actual arguments.

— Passing parameters by reference: The arguments
received by the function are aliases of the actual
arguments.

e In Java, primitive data types are passed by value, but
all user-defined data types are passed by reference.

D McGill

Passing parameters by reference

class A {
int x;

}

class B {

static void m(A u) // By ref
{

0. x++;

by
static void t(int x) // By val

{

X++;

D McGill

Passing parameters by reference

class Test {

void p()

{
A g = new AQ);
q.x = 3;
B.m(q) ;
System.out.println(q.x);
B.t(q.x);
System.out.println(q.x);

D McGill

The null reference
e A variable whose type is a class is initialised to null.

e If a variable whose type is a class is not assigned an
object (constructed with new,) and we try to access its
attributes or methods, then a run-time error, called a
“null-pointer exception” will occur.

e In the following example, if method r is called, a null
pointer exception will occur:

class A { int x; }
class B {
static void p(A u)
{

u.x = 7; // Null pointer exception

¥

static void r()
{
Av; // v ==null
p(v);
t
t

D McGill

The null reference (contd.)

e \We can avoid these errors by using an explicit check for
a valid reference:

class A { int x; }
class B A
static void p(A u)
{
if (u !'= null)
u.x = 7;
}
static void r()
{
Av; // v ==null
p(v);
}
}

D McGill

Arrays

e An array is an indexed sequence of variables of the
same type. By indexed we mean that the variables are
consecutive in memory and each of them has an index,
with 0 being the first, 1 the second, and so on.

0O 1 2 3 4 5

e Each variable in the array is called a position, a cell or
a slot, and as any variable, it can contain a value.

e Arrays are declared as follows:
type [1 name;

e Where type is any data type (primitive or user-defined).

D McGill

Arrays (contd.)

e For example an array of integers called mylist which is
declared as

int[] mylist;

e In an array declaration typel[] is the type of the array,
and type is its base type. (An array of integers is not
the same as a single integer.)

e Arrays can have as base type a class.

e For example, if we have a class Mouse then an array of
mice is declared as:

Mouse[] mouse_list;

D McGill

10

Arrays (contd.)

e But declaring an array does not create the array itself,
only a reference.

e To create an array we use the new keyword.
mylist = new int[6];

e Where the variable mylist is actually a reference to the

aray itself

mylist

D McGill .

Array access

e To access individual elements of an array we use the
indexing operator [|: If variable is a reference to an
array, and number is a positive integer, or 0, then the
position number can be accessed by

variable [number]
e For example mylist[0] refers to the first position of
mylist, mylist[1] to the second, mylist[2] to the

third, and so on.

e To write a value in the array, we can use the assignment
operator:

variable [number] = expression;

e Where expression must be of the same type as the
base type of the array.

D McGill

12

Processing arrays

e Processing arrays is a generalization of processing
strings.

e ali] isanalogousto s.charAt (i), but only for reading
the i-th, not for writing: charAt cannot be used for
modifying a string. This is: s.charAt(i) = expr; is
illegal syntax.

e Use loops to traverse an array.

e The length of an array a can be obtained by the expres-
sion a.length

e This is independent of the number of slots that hold a
value

D McGill

13

Example 1

e Finding the minimum number in an array

static double find_min(double[] a)
{
int index;
double minimum;
index = 0O;
minimum = 999999999 .9;
while (index < a.length) {
if (alindex] < minimum) A
minimum = alindex];
t
index++;
}

return minimum;

¥

D McGill

Example 2

e Returning the index where the minimum is located

static int find_min(doublel[] a)
{
int index, min_index;
double minimum;
index = 0O;
min_index = 0O;
minimum = al[0];
while (index < a.length) {
if (alindex] < minimum) A
minimum = alindex];
min_index = 1index;
}
1ndex++;
+

return min_index;

}

D McGill

Processing arrays: safety
e Since arrays are references, it is often useful to check
whether they are null or not before using them, to avoid
null-pointer exceptions.

e |f the array has as base type a class, it is also useful to
check that each slot which will be processed or accessed
is not null.

e For example:

class A { int x; }
class B {
static void m(A[] list)
{
if (list != null) {
for (int 1 = 0; i < list.length; i++) {
if (listl[i] != null) {
list[i] = 2 * i;
+
}
}
}

D McGill

16

Initializing arrays

e |f we have a class

class B {

int n;

B(int x) { n = x; }
}

e and somewhere else we declare and create an array
B[] list = new B[7];

e Then all the slots in the array will be initialized to null.
This is, the constructor for B will not be called. If we
want an object created in each slot, we have to do it
explicitely:

for (int i=0; i < list.length; i++)
list[i] = new B(3);

D McGill

17

Initializing arrays

e Arrays can be initialized with default values using the
syntax:

type] var = { exprl, expr2, ..., exprn };
Where each expri is of type type.

e For example:

int[] a=9{1, 1, 2, 3, 5 };
Z[]1 u =41 new Z(), new Z() };

D McGill .

Array applications

e Library: Book database

e Problem: Create a database of books, which supports
the operations of adding a new book, and searching for
a book by title.

e Analysis:

— Identify objects and classes:
x Individual books
x A library: book database
— Relationships
x Each book has a title and an author
x A book database has a list of books
— Operations/Interactions/Behaviour
x Adding books to a database
x Searching for a book in a database

D McGill

19

Array applications (contd.)

e Design

— Class diagram

Library

+book_list: BookK]]

+add_book(b:Book): void

+find_book(title:String): Book

il

book list >

i

Book

+title: String
+author: String

+get_title(): String
+get_author(): String

D McGill

20

Array applications (contd.)

e Design (contd.)
— Adding a book m:

1. Set book_list[i] to m, where i is the next available
slot

So we need to remember the next available slot. We
can do this by adding a new attribute to the database
which is the index of the next available cell. Hence the
add book operation should now be:

1. If i < length of book_list: (where i is the next
available slot)

(a) Set book_listli] to m,

(b) increase i by 1

D McGill

21

Array applications (contd.)

e Design (contd.)
— Finding a book with title t:

1. For each element book_list[i] which is not null and
such that i<the length of the list:
(a) If the title ot book_list[i] is equal to t then
. return book_list]i]
2. If not found, return null

D McGill

22

Array applications (contd.)

class Book {
private String title, author;
public Book(String t, String d)
{
title = t;
author = d;
I
public String title() { return title; }
public String author() { return author; }
public Book clone()
{
return new Book(this.title, this.author) ;
+
by

D McGill

23

Array applications (contd.)

class Library {
private Book[] book_list;
private 1int next_available;
public int number_of_books;

public Library(int max_capacity)

{
book_list = new Book[max_capacity];
next_available = 0;
number_of _books = 0;

// Continues below...

D McGill

public void add_book(Book m)
{
if (next_available < book_list.length) {
book_list[next_available] = m;
// or m.clone();
next_avallable++;
number_of _books++;

}
}
public Book find_book(String title)
{
int i1ndex = 0;
while (index < number_of_books) {
Book m = book_list[index];
String t = m.title();
if (t.equals(title)) {
return m;
}
index++;
+
return null;
}
+ // End of Library

D McGill

25

Array applications (contd.)

e Second version of find

public Book find_book(String title)
{
int index;
index = 0O;
while (index < number_of_books) {
if (book_list[index].title() .equals(title)) {
return book_index[index];
}
index++;

}

return null;

D McGill y

Array applications (contd.)

e Using the database

public class Test {

public static void main(String[] args)

{
Library db = new Library(10000) ;
Book m;
m = new Book(“Fictions’’,‘‘Borges’’);
db.add_book (m) ;
m = new Book(‘‘Hamlet’’,‘‘Shakespeare’’) ;
db.add_book (m) ;
m = new Book(“‘L\’Avare’’,‘Moliere”’);
db.add_book (m) ;
Book k = db.find_book(‘““‘Hamlet’’) ;
System.out.println(k.author());

D McGill

Array applications (contd.)

main frame
db 1 Book
\ title Fictions
> author Borges
\ Lib °
ibrary
g Book
book_list — _
next_available 3 title Hamlet
number_of books 3 author Shakespear
Book
null | 9998
null | 9999 title L'Avare
author Moliere

D McGill

28

Array applications (contd.)

e Deleting elements from the database

public int book_index(String title)
{
for (int i=0; i < book_list.length; i++) {
Book m = book_listl[i];
if (m != null && m.title().equals(title)) {
return 1;
}
}
return -1;
}
public void delete_book(String title)
{
int 1 = book_index(title);
if (i t= -1) {
book_list[i] = null;
number_of _books--;
}
}

D McGill

29

Array applications (contd.)

e But there's a problem: holes!

public class Test {

public static void main(String[] args)

{
Library db = new Library(10000) ;
Book m;
m = new Book(“Fictions’’,‘‘Borges’’);
db.add_book (m) ;
m = new Book(‘‘Hamlet’’,‘‘Shakespeare’’) ;
db.add_book (m) ;
m = new Book(“‘L\’Avare’’,‘Moliere”’);
db.add_book (m) ;
db.delete_book(‘‘Hamlet’’) ;
m = new Book(‘“Don Quijote’,‘‘Cervantes’);
db.add_book (m) ;

D McGill

30

Array applications (contd.)

main frame

do [

\ Library

Book

title Fictions
author Borges

1
2
3
4
Book
5 00
title Hamlet
author Shakespear
Book

book_list —
next_available 3
number_of books 3
null | 9998
null | 9999 title L'Avare
author Moliere
T McGill

31

Array applications (contd.)

main frame
db [4 Book
\ 1 title Fictions
5 author Borges
_ 3
Library
book_list — >
next_available 4
number_of books 3
Book
null | 9998
null | 9999 title L'Avare
author Moliere
Book
title Don Quijot
author Cervantes
T McGill

32

Array applications (contd.)

e New algorithm for adding a book m:

1. Find an available slot i in book_list

2. Set book_list[i] to the book m

D McGill

33

Array applications (contd.)

e Implementation

public void add_book(Book m)
{
// Find an empty slot
int index = 0;
while (index < book_list.length
&& book_list[index] '= null) {
1index++;
+
// Store the book
if (index < book_list.length) {
book_list[index] = m;
number_of_books++;

}
¥

D McGill

34

Array applications (contd.)

class Library {
private Book[] book_list;
public int number_of_books;

public Library(int max_capacity)

{
book_list = new Book[max_capacity];
number_of_books = 0;

public void add_book(Book m)
{
int i1ndex = 0;
while (index < book_list.length
&& book_list[index] !'= null) A
1ndex++;
I
if (index < book_list.length) {
book_list[index] = m;
number_of _books++;

¥
¥

D McGill

Array applications (contd.)

public int book_index(String title)
{
for (int i=0; i < book_list.length; i++) {
Book m = book_listl[i];
if (m != null && m.title() .equals(title)) {
return 1;
b
by

return -1;

}

public void delete_book(String title)
{
int i = book_index(title);
if (1 1= -1) {
book_list[i] = null;
number_of_books--;
}
}

D McGill

36

Array applications (contd.)

public Book find_book(String title)
{
int i = book_index(title);
if (i !'= -1) return book_list[i];
return null;
+
Y // End of Library

D McGill

37

Optimized Book database

|dea: instead of looking for an available cell each time
we add a book, modify the delete method so that when we
delete a book, move the last book of the list to the cell
which just openned. This way, the array is not fragmented.
This is, there are no holes, and all books are all grouped
toghether at the beginning of the array.

public class Library {
private Book[] book_list;
private 1int next_available;

public Library(int max_capacity)

{
book_list = new Book[max_capacity];
next_available = 0;

}

// Continues below. ..

D McGill

38

Optimized Book database

public void add_book(Book m)
{
if (next_available < book_list.length) {
book_list[next_available] = m;
next_avallable++;

¥
¥

public int book_index(String title)
{
for (int i=0; i < book_list.length; i++) {
Book m = book_listl[i];
if (m !'= null && m.title() .equals(title)) {
return 1;
+
+

return -1;

}

D McGill

39

Optimized Book database

public void delete_book(String title)
{
int i = book_index(title);
if (1 '= -1) {
book_list[i]l=book_list[next_available-1];
book_list[next_available - 1] = null;
next_availlable--;
}
}
public Book find_book(String t)
{
int i = book_index(t);
if (i !'= -1) return book_list[i];
return null;

}

public int number_of_books()

{

return next_availlable;

}

by
D McGill

40

Growing arrays

e An array has a finite and fixed amount of memory.

e |n some applications we don't know a priori how much
memory we need.

o C/C++ allow to grow arrays at will: big data-safety
problem.

e Java does not allow to grow arrays directly, but we can
simulate it indirectly:

e Growing arrays:

— Whenever the array of interest fills up, a new, bigger
array is created,

— ...and the values of the old array are copied (shallowly)
Into the new array.

e Or, use class ArrayList or Vector from the standard
library.

D McGill

41

The Vector and ArrayList classes

e Two classes which encapsulate growing arrays

e The two provide essentially the same functionality, but
have a slightly different underlying implementation.

e \ector has methods

void setElementAt(Object o, int index)
Object elementAt(int index)

int size()

boolean contains(Object o)

int index_of (Object o)

// ... etc

e Arraylist has methods

Object get(int index)

void set(int index, Object o)
void add(Object o)

int size()

// ... etc

D McGill

42

The Vector and ArrayList classes

public class Library {
private ArrayList book_list;

public Library()

{

book_list = new Vector();
+
public void add_book(Book m)
{

book_list.add(m);
+
/] ...

D McGill

Growing arrays

e Change algorithm for adding a movie m:

1. Find first available cell

2. If an available cell is found:

(a) Store m in that cell

3. Otherwise:

(a) Grow the array (copying contents of the old to the
new)

(b) Find the first available cell in the new array (guarran-
teed to exist.)

(c) Store m in that cell

D McGill

44

Growing arrays

// In class Library
private void grow_array(int n)

{

int new_capacity = book_list.length + n;
Book[] new_list = new Book[new_capacity];
int 1 = 0;
while (i < Book_list.length) {
new_list[i] = book_list[i]; // shallow copy
i++:
b

book_list = new_list; // Update list reference

The method is private to ensure encapsulation so that only
MovieDatabase objects can grow the movie lists.

D McGill .

The end

D McGill

46

