Review

e Inheritance:

— Represents the “is-a" relationship between classes
— Represents specialization of classes (subsets)
— Represents a way of describing alternatives (alterna-

tive subclasses)
— Is a mechanism for reusability

D McGill

Inheritance

e Whenever we have a situation which states that “every
A is a B", we model this as

class A extends B { ... }

e All attributes and methods from the parent class (or
super class) B are “inherited” by the subclass (or derived

class) A.

e Class A can have (and usually does have) additional
attributes and methods.

represents:
"every A is a B"
(inheritance)

B

f

A

represents:
"every A has a B"
(aggregation)

D McGill

Inheritance

e Avristotle’s silogisms describing inheritance

— if every Ais a B and x is an A then x is a B
* (e.g. if every labrador is a dog and Grommit is a
labrador then Grommit is a dog)
— if every A is a B and every B has a C then every A
has a C
* (e.g. if every labrador is a dog and every dog has
a tail then every labrador has a tail)

D McGill

Inheritance

e The silogism “if every A is a B and every B has a C
then every A has a C’, means that all the attributes
that B has, are also attributes of A. A may have other
attributes as well which B doesn’t. A is more specific or
specialized than B.

class C{ ... }
class B {

C v;

/] ...
}

class A extends B {
// Has an implicit C v;
/]

}

D McGill

Inheritance

class Engine {

/] ...
¥

class Car A
Engine e;
/] ...

}

class RacingCar extends Car {
// It implicitly has Engine e;
/] ...

¥

// In some client
RacingCar r = new RacingCar();
Engine e = r.e; // e is inherited from Car

D McGill

Inheritance

e Inheritance also represents specialization

class Engine {
/] ...
+
class Car {
Engine e;
Car() { e = new Engine(); }
/] ...
+

class RacingCar extends Car {
Aerofoil a;
TurboCharger t;

¥

// In some client

RacingCar r = new RacingCar();

Engine el = r.e; // e is inherited from Car
TurboCharger tl1 = r.t;

Car ¢ = new Car();

Engine e2 = c.e;

TurboCharger t2 = c.t; // Error

D McGill

Inheritance

e |nheritance serves as a tool for reusability:

e \We can write

class RacingCar extends Car {
Aerofoil a;
TurboCharger t;

¥

instead of

class RacingCar {
Engine e;
Aerofoil a;
TurboCharger t;

¥

D McGill

Inheritance

e Methods are inherited too:

class Engine {
void start() { ... }
}
class Car {
Engine e;
double speed;
Car() { e = new Engine(); speed = 0.0; }
void turn_on()
{
e.start();
}
+

class RacingCar extends Car {
Aerofoil a;
TurboCharger t;
by
// In some client
RacingCar r = new RacingCar();
r.turn_on(); // Inherited from Car

D McGill

Inheritance

e Classes can have many subclasses

class Sedan extends Car {
Trunk t;
PassengerSeats[] ps;

}

// In some client

Sedan s = new Sedan();

s.turn_on() ;

Car

RacingCar Sedan

D McGill

Inheritance

e |nheritance is a transitive relation: if every A is a B and
every B is a C, then every Aisa C

class F1Car extends RacingCar {
opeedControlSystem scs;

¥

e instead of

class FiCar {
Engine e;
Aerofoil a;
TurboCharger t;
SpeedControlSystem scs;

¥

D McGill

10

Inheritance

e Class hierarchy:

Car

RacingCar

JA)

Engine

Sedan

F1Car

Cart

Nascar

D McGill

11

Inheritance

e A closer look at inheritance as specialization

class Animal {

boolean tired, hungry;

void eat()

{
get_food () ;
hungry = false;

¥

void get_food() { ... }

void sleep()

{
System.out.println(‘“‘zzz...”’);
tired = false;

¥

by

D McGill

12

Inheritance

class Dog extends Animal {
Legsl[] 1;
Tall t;
void run()
{
tired = true; // From class Animal
hungry = true;
b
void bark()
{
System.out.println(‘“Woof, Woof!”’);
b
b

class Labrador extends Dog {
void say_hello()
{
t.wiggle(); // t from class Dog
¥
¥

D McGill

13

Inheritance

public class ZooTest {
public static void main(String[] args)
{
Labrador 1 = new Labrador();

1.say_hello(); // Will call 1.t.wiggle(Q);
1.run();

if (1.hungry)

l.eat(); // from class Animal
if (1.tired)

1.sleep();

D McGill

14

Inheritance

e |nheritance represents also a spectrum of possibilities or
alternatives, given by the subclasses of a class

e |f every Bisan A and every Cis an A, and nothing else
is an A, then an A is eithera Bora C

— (e.g. if every racing car is a car, and every sedan is a
car, and nothing else is a car, then a car is either a
racing car or a sedan.)

class Animal { ... }

class Dog extends Animal { ... }
class Cat extends Animal { ... }
class Bird extends Animal { ... }

// In some client

Animal al = new Dog();

Animal a2 = new Cat();

Animal a3 = new Bird();

Dog d = new Animal(); // Wrong!

D McGill

15

Inheritance

e (lasses as sets of objects:

— "is-a’ between an object and a class is the same as €
— “is-a" between two classes is the same as C

o Llet A B, C be sets

— fAC Bandxz € Athenx € B

— fACBand BC(Cthen ACB

— If BC A and C C A, and there is no other set D
such that D C A then A=BUC

D McGill .

Inheritance

e A bank account is either a savings account or a checking
account, then a savings account is a kind of bank
account, and a checking account is a kind of bank
account.

BankAccount
+balance: float

+deposit(amount:float): void
+withdraw(amount:float): void
+balance(): float

SavingsAccount CheckingAccount
+interest_rate: float +fee: float
+apply_interest(): void +deduct_fees(): void

D McGill

17

Inheritance

class BankAccount {
private float balance;
public BankAccount(float initial_balance)

{

balance = 1nitial_balance;

¥
public void deposit(float amount)

{

balance = balance + amount;

¥

public void withdraw(float amount)

{

balance = balance - amount;

}

public float balance() { return balance; }

D McGill

18

Inheritance

class SavingsAccount extends BankAccount {
private float interest_rate;
public SavingsAccount(float initial_balance,
float rate)
{
super (initial_balance); // Calls superclass
// constructor
interest_rate = rate;

b
public void apply_interest()

{
balance = balance
+ balance * interest_rate/100.0;

D McGill

19

Inheritance

class CheckingAccount extends BankAccount {
private float fee;
public SavingsAccount(float initial_balance,
float fee)
{
super (initial_balance) ;
this.fee fee;

¥
public void deduct_fee()

{

balance = balance - fee;

D McGill

20

Overriding methods

BankAccount

+balance: float

+deposit(amount:float): void
+withdraw(amount:float): void
+balance(): float

SavingsAccount CheckingAccount
+interest_rate: float +fee: float
+apply_interest(): void +deduct_fees(): void

LimitedSavingsAccount
+daily_limit: float
+withdraw(amount:float): void

D McGill

21

Overriding methods

class LimitedSavingsAccount
extends SavingsAccount {
private float daily_limit;
public LimitedAccount(float initial_balance,
float rate, float limit)
{
super (initial_balance, rate);
daily_limit = limit;

¥
public void withdraw(float amount)
{
if (amount < daily_limit)
balance = balance - amount;
b

D McGill

22

Inheritance

class C{ ... }
class D { ... }
class E A . F
class B {

C vl, v2;

D u;

void m() { ... %}
}
class A extends B {

E x;

Cy;

void p() { ... }
void s() { ... %}

¥

D McGill

23

Inheritance

// In some client

A obj = new AQ);
obj.pQO);
obj.m();
// We can refer to ... obj.x ...
// ... obj.u ... obj.vl ... obj.v2 ...
some frame
A
Obj — ()
vl
V2 B
u
e)
y

obj.y ...

D McGill

24

Inheritance

e A method in a subclass can access the attributes and
methods of its super class.

class C{ ... }
class D { ... }
class E{ ... }
class B {
C vl, v2;
D u;
voidm() { ... vl ... v2 ... u ... m(Q)
+
class A extends B {
E x;
Cy;
void p()
{
X ooy oo pO oo VDL
.. v2 ...u ... mQ)
}

void s() { ... %}
+

D McGill

25

Inheritance

class M extends A {
E z;
D r;
void q(O) { ... }
}
// Somewhere else
M obj2 = new MQ);

some frame
M
obj [()
vl
v2 B
u
X A
y
Z
r M
_ J

D McGill

26

Shadowing variables

e An attribute or instance variable can be redefined in a
subclass. In this case we say that the variable in the
subclass shadows the variable in the parent class.

class M extends A {

E z;
D r, x;
void q() { ... }
t
some frame
M
Obj — 4)
vl
v2 B
u
X A
y
Z
r M
X
_ J

D McGill

27

Accessing variables from the super
class

e The super reference is used to access an attribute or
method in a parent class.

class M extends A {

E z;
D r, x;
void q()
{
. this.x ... super.x ...
Iy

D McGill

28

Overriding methods

e A method can be redefined in a subclass. This is called
overriding the method.

class M extends A {
E z;
D r, x;
void q()
{

... this.x ... super.x ...
¥
void p()
{

}

D McGill

29

Inheritance

e A method in a subclass can access the attributes and
methods of its super class.

class C{ ... }
class D { ... }
class E{ ... }
class B {
C vl, v2;
D u;
voidm() { ... vl ... v2 ... u ... m(Q)
+
class A extends B {
E x;
Cy;
void p()
{
X ooy oo pO oo VDL
.. v2 ...u ... mQ)
}

void s() { ... %}
+

D McGill

30

Accessing a method or attribute

e When we try to access a method or attribute of an
object, it is looked up by the Java runtime system in
the class of the object first. If it is not found there, it is
looked up in the parent class. If it is not found there, it
is looked up in the grand-parent, etc...

M obj3 = M(Q);

obj3.q(0); // From
obj3.m(); // From
obj3.p(); // From
obj3.s(); // From

class
class
class
class

=l v o R

e Attributes and methods declared as private cannot be
accessed directly by the subclasses, even though they
are present in the object. They can be accessed only
indirectly by public accessor methods in the class that
declared them as private.

D McGill

31

Accessing a method or attribute

class A extends B {
private E x, y;
void p() { }
void s() { }
public E get_x() { return x; }

¥

class M extends A {

E z;
D r, x;
void q()
{
. this.x ...

// instead of super.x ...

... getx() ... or ... super.get_x()
b

I

D McGill

32

Accessing a method or attribute

e An attribute or method declared as protected can be

accessed by any subclass, even if it is in a different
package.

e An attribute or method declared as final, is not inher-
ited at all, i.e. it forbids overriding.

e A class declared as final, cannot have subclasses.

D McGill

33

Multiple inheritance

e Multiple inheritance: a class with more than one super-
class

D McGill

34

Multiple inheritance

Animal

Mammal

Fish

+sleep(): void

+sleep(): void

Dolphin

D McGill

35

Multiple inheritance

Animal

Mammal Fish
+sl eep(): void +sl eep(): void
Dolphin
class A extends B, C{ ... } // Error

e Java does not support multiple inheritance

D McGill

36

Multiple inheritance

G

+p()

= F

+p() ZF
B C D
L .

D McGill

37

Polymorphism

e Polymorphism means "many forms.”

e Polymorphism is the characteristic of being able to assign
a different meaning or usage to something in different
contexts

e A polymorphic method is a method which can accept
more than one type of argument

e Kinds of polymorphism:

— Overloading (Ad-hoc polymorphism): redefining a
method in the same class, but with different signa-
ture (multiple methods with the same name.) Dif-
ferent code is required to handle each type of input
parameter.

— Parametric polymorphism: a method is defined once,
but when invoked, it can receive as arguments objects
from any subclass of its parameters. The same code
can handle different types of input parameters.

D McGill

38

Polymorphism

class Creature {
boolean alive;
void move()
{
System.out.println("The way I
}
}

class Human extends Creature {
void move()
{
System.out.println("Walking. ..
+
+

class Martian extends Creature {
void move()
{
System.out.println("Crawling. .
+
+

move 1s by..

l),

.n);

D McGill

39

n) .
.)

Ad-hoc Polymorphism (Overloading)

class Zoo {
void animate (Human h)

{

h.move() ;

}

void animate(Martian m)

{
m.move () ;
}
}

public class ZooTest {

public static void main(String[] args)

{
Zoo my_zoo = new Zoo();
Human yannick = new Human();
Martian ernesto = new Martian();
my_zo0o0.animate (ernesto); // Polymorphic call
my_zoo.animate(yannick); // Polymorphic call

}

by
D McGill

40

Parametric Polymorphism

class Zoo {
void animate(Creature c)
{
c.move() ;
}
}

public class ZooTest {

public static void main(Stringl[] args)

{
Zoo my_zoo = new Zoo();
Human yannick = new Human() ;
Martian ernesto = new Martian();
my_zoo.animate(ernesto); // Polymorphic call
my_zoo.animate(yannick); // Polymorphic call

B McGill .

Accessing super

class Human extends Creature A
void move()
{
super .move () ;
System.out.println(‘“Walking. ..

}
¥

class Martian extends Creature A
void move()
{
super .move ()
System.out.println(““‘Crawling. .

¥
¥

n) .
. ’

D McGill

42

Casting and instanceof

e (Casting is like putting a special lens on an object
e A casting expression is of the form
(type) expr

where type is any type (primitive or user-defined) and expr
Is an expression which evaluates to an object reference
whose type is compatible with type.

e Not all casts are possible

(int) ‘‘Hello”’
(Engine) yannick

D McGill

43

Casting

e If a variable is a reference of type A, it can be assigned
any object whose type is a subclass of B.

Human greg = new Human();
Creature c = greg;

e But a reference of type B cannot be assigned directly
reference of type A, if B is a subclass of A (because A
has less attributes than required by B):

Creature d = new Creature();
Martian m = d;

e __however, if we know that a reference x of type A
points to an object of type B (and B is a subclass of A))
then we can force to see x as being of type B by using
a casting expression:

Creature e = new Martian();
Martian f = (Martian)e;

D McGill

44

Checking the type of a reference

e To find out whether a reference r is an instance of a
particular class C we use the boolean expression:

r instanceof C
e This is normally used whenever we do casting:

class Human extends Creature {
void move ()

{
System.out.println(‘“Walking...”’);

¥
void jump()
{
System.out.println("Up and down");

D McGill

45

Checking the type of a reference

class Martian extends Creature {
void move()

{
System.out.println("Crawling...");
ks
void hop()
{
System.out.println("Down and to the left");
I

¥

class Zoo {
void move(Creature c)
{
if (c instanceof Human)
((Human)c) . jump () ;
else if (c instanceof Martian)
((Martian)c) .hop();
c.move() ;

}

¥
D McGill

46

The end

D McGill

47

