COMP-202

Introduction to Computing 1
Section 2
Ernesto Posse
ENGMC 11

TTR 10:00 - 11:30

Course website:

http://www.cs.mcgill.ca/"cs202

D McGill

What this course is about

e This course is an introduction to computer programming

e Computer programming: solving problems involving
information by means of a computer

D McGill

What this course is not about

e T his course is not about. ..

— ...how to use a computer

— ...how to use software applications

— ...how to use the Operating System

— ...how to send e-mail

— ...how to surf the Web

— ...how to create Web pages

— _..how to fix your printer

— ...how to become a hacker

— ..how to manage a computer system (installing
software, fixing problems, etc.)

e There is no course in Computer Science about how to
use computers, in the same way that there is no course
in Mechanical Engineering that teaches how to drive a
car or operate some machinery.

D McGill

Objectives

e 1o learn:

— ...a methodology to understand and solve problems
involving information

— ...how to think computationally

— ...how to create simple algorithms

— ...how to design and implement computer programs
using the Java programming language

— ..how to solve problems in an Object-Oriented
manner

e Thisis neither a “computers course’ nor a "Java course.”

D McGill

Fundamental concepts

e Algorithms: An algorithm is a well-defined procedure to
solve a problem

e Programming Language: A formal language used to
express algorithms

e Programs: The realization of some algorithm in a
programming language

D McGill

Why is computer programming useful

e General benefits

— Introduces a structured way of thinking, analysing
and solving problems

e Applications

— Engineering and Physical sciences: modelling and
simulation

— Biological sciences: Bioinformatics, Eco-system
modelling

— Geography, Enviromental Studies and Urbanism:
Geographic Information Systems

— Economics: Economic forecasting and analysis,
Economic modelling

— Management: Databases, Information Systems,
Process optimization

— Software development

D McGill

Who is this course for

e Required for:

— Major in Software Engineering

— Major in Computer Engineering
— Major in Electrical Engineering
— Minor in Computer Science

— ...others

e Anyone interested in learning how to develop software

D McGill

Prerequisites

e An upper-level CEGEP Mathematics course or
equivalent

e |ogical thinking: being able to reason, to deduct and to
infer

e Familiarity with using computers:

— Editing and saving text files
— File system: using directories/folders (navigating,
copying files, etc.)

D McGill 8

Is this course easy?

e No

e This course is considered easy by approximately 5% to
10% of previous students

e The workload is heavy, specially after assignment 2.
e The exams are long

e Course withdrawal: please consult the Undergraduate
Course Calendar

D McGill

Grading system

e The marks will be divided as follows:

— Assignments: 25%
— Midterm: 20%
— Final: 55%

e Assignments:

— INDIVIDUAL

— There are 6 assignments
— To be submitted electronically through WebCT

e Midterm: covers all topics up to the day before the
exam

e Final: covers all topics

D McGill

10

Plagiarism

e All coursework must be done INDIVIDUALLY

e You may not work in groups: if you need help, contact
a TA or instructor

e Each assignment and exam must be marked with your
full name and student id

e By putting your name and id you are stating that the
assignment is entirely your own work

e Students who put their name on programs, modules, or
parts of programs that are not entirely their own work
will be referred to the appropriate Associate Dean who
will assess the need for further disciplinary action.

D McGill

11

Office hours

e \Where: McConnell Engineering Building, room 202

e When: Wednesdays from 2:00pm to 4:00pm

e ..or by appointment (e-mail)

e . but you can come by (almost) anytime

e E-mail: eposse@cs.mcgill.ca (Do not use WebCT e-mail)
e Teaching Assistants (TAs): office hours TBA

e Treat the TAs respectfully

D McGill

12

What you will need

The textbook: Java Software Solutions by John Lewis
and William Loftus

Available at the McGill Bookstore (you may use old and
used editions.)

Access to a computer:

— Either at home
— ...or at the Trottier labs (Trottier Building, 3rd floor)
— ...or anywhere else

Software:

— The Java Software Development Kit (j2sdk)
— An IDE (Integrated Development Environment)

Pl
e
*

McGill

13

If you use the Trottier labs

e located at the third floor of the Lorne M. Trottier
Building

e All machines are Linux or Unix boxes (no Windows or
Macintosh computers)

e Openning an account: (only if you are officially
registered)

— Enter username and password
% username: newuser
x password: newuser
— Answer what you are asked
— If you need extra help, ask for the consultant

e These machines have already installed the j2sdk and
NetBeans, and IDE

e To learn about Linux/Unix, there will be seminars next
week at the beginner and intermmediate levels.

D McGill

14

If you use another machine

e You need to install the j2sdk:

— It comes with the book
— |t can also be downloaded for free from

http://java.sun.com
x Download J2SE, Desktop, any version after 1.3.1

e You need to install an IDE

— For example a free IDE for Windows is JCreator LE,
which can be downloaded from:
http://www. jcreator.com

e [nstall the IDE after installing the j2sdk

D McGill

15

Hints for not suffering in this course

e READ CAREFULLY
e Don't wait until the last minute to do your assignments

e Do not copy any part of anyone else's assignment
(current or past students)

e Do not work in groups. If you have difficulties, contact
the instructor or the TAs.

e Do not expect to be given every single detail. Expect
to deduce things on your own.

e Experiment!

D McGill

16

Computers and Information

e \What is a computer?
e How computers work?

e How is information stored/represented in a computer?

D McGill

17

Computers and Information

e A computer is a machine that can perform many
different tasks

e ...but the tasks are not predefined

e A computer is a machine which can execute instructions
which we give to it

e Therefore, if we can change the set of instructions we
can tell the computer to do different things

D McGill

18

Computers and Information

e Hardware vs Software

— Hardware: circuits

— Software: programs
* Application programs
x Operating System

e Computer components (Hardware):

— CPU (Processor)

— Memory (RAM/ROM /etc.)

— Input-Output Devices (10, Keyboard, Screen, Mouse,
Printer, etc.)

— Note: Disks (Hard Disks, CDs, etc.) are 10 devices
which store data, so they can be seen also as a kind

of memory
— Bus

D McGill

19

Computers and Information

Memory CPU

Bus

~ /

[—w

D McGill

Memory

Computers and Information

Data

CPU

Programs

Bus

IO devices

D McGill

21

Memory, data and programs

e Memory:

— Memory is a very long (but finite) list of cells or
memory locations

— Each cell is assigned a unique address (a natural
number)

— Each cell contains some piece of information (of fixed
size)

— Some cells contain just data

— Other cells contain instructions for the processor

e Programs

— A program is a sequence of instructions

— A program can be stored in memory

— Programs manipulate the data which is stored in
other memory locations

— Programs are data which is executable by the
processor (Von Neumann Architecture)

D McGill

22

Memory, data and programs

Memory

"D WIN - O

1073741824

D McGill

23

Program execution

e The CPU keeps track of the program which it is
executing

e The CPU takes each program instruction (one at a time)
from memory, ...

® ... and executes the instruction...

e __which may involve:

— making an arithmetic computation

— reading from or writing to memory

— reading from or writing to an 10 device

— other operations (changing the next instruction to be
executed)

e The traffic of data between the components is through
the bus

D McGill

24

Data representation

e Data is stored in memory

e Memory cells store numbers

e Numbers represent different types of information:

— letters

— text

— graphics/pictures/images

— sound

— movies

— structured data (e.g. databases, tables, etc.)
— mathematical functions

— programs

D McGill

25

Data representation

e How are numbers represented in memory?

— A computer is an electronic device made out of wires

— Wires have a voltage

— We can think of the voltage of a wire as the state of
the wire

— Different voltages can represent different values

e To simplify things, digital circuits have wires with only
two possible voltages (e.g. 0 and +3V).

e Hence a single digital wire can represent something
that has two possible values: a bit (true/false, on/off,
up/down, yes/no, ...)

e The bit is the fundamental unit of information: 0 and 1

D McGill

26

Data representation

e To represent more complex things, we can form

sequences of bits: 000101, 1101001, 00, 111111111111,
1010101010, ...

e Bit sequences represent binary numbers: numbers in
base 2:

— 01is0
—1is1
— 21s 10
— 3is 11
— 4is 100
— 5is 101

e Binary numbers are ordinary numbers which are written
with only two digits (0 and 1) instead of ten (0 to 9).

D McGill

27

Data representation

e Bit sequences can represent other things: e.g. letters

— "a is 10001001
— b’ is 10001010
— ‘¢’ is 10001011

e And therefore text: "bca” is 100010101000101110001001

D McGill y

Data representation

e They can also represent images

D McGill

29

Data representation

D McGill

30

Data representation

110010010
or
100111000

D McGill

31

Data representation

0 O]1]11]1|0}|0
0 1]11]0]0| 1|0
0 | 0f0]1]1]0]0
0 0]11]0]1]0]0
0 0]11]1]0]0]0
0 010j0J0]0O]|O

011100110010001100010100011000000000
or
010000110110101010101100010000000000

D McGill

32

Data representation

e Bit sequences can represent other things: e.g. letters

— "2 is 01100001 which is 97 in decimal
— b is 01100010 which is 98
— ¢ is 01100011 which is 99

— ‘e is 01100101 which is 101

e And therefore text: “hello” is 01101000 01100101
01101100 01101100 01101111

e or ... 104 101 108 108 111

D McGill

33

Data in memory

e Each memory cell can contain a fixed number of bits:
32 bits, or 64 bits

e Some terminology:

— A sequence of bits with the size of a memory cell is
called a word

— A sequence of 8 bits is called a byte

— A sequence of 1024 bytes is called a kilobyte of KB
(1024 = 219)

— A sequence of 1024 kilobytes is a megabyte (MB)

— A sequence of 1024 megabytes is a gigabyte (GB)

— A sequence of 1024 gigabytes is a terabyte (TB)

D McGill

34

Data in memory

e How much information can be represented by n bits?

— 1 bit: 2 possible values
— 2 bits: 4 possible values
— 3 bits: 8 possible values
— 4 bits: 16 possible values

— n bits: 2™ possible values
e To represent the English alphabet we need 7 bits

e |f we have q possible values, how many bits do we need?:
[log2q|

e The ASCII code uses 8 bits: letters, decimal digits,
symbols, etc.

e Unicode uses 16 bits: accents, different alphabets, more
symbols, etc.

D McGill

35

Binary to decimal conversion

e Problem: given a sequence of n bits, what is the decimal
(base 10) representation of the sequence?

e Examples:

— 00000000000 is O
—1is1

— 0010 is 2

— 111is 3

— 100 i1s 4

e Notation: Let the sequence be b = b,,_1b5,—2 - - - bab1bg
(indexed from right to left, starting from 0)

D McGill y

Binary to decimal conversion

e Solution: B
dec(b) =) b; -2’
1=0
e Examples:
dec(1101) = 1-2341-2240-2'41.20
= 1-84+1-4+0-2+1-1
8+4+1
= 13
dec(101101) = 1-2°4+0-2*+1-294+1-22+0-2'+1-2°
1-32+0-16+1-8+1-4+0-2+1-1
= 32+8+4+1
= 45

D McGill

37

Decimal to binary conversion

e Problem: given a natural number (positive integer or 0)
m, what is its binary (base 2) representation”?

e Analysis:

— Given m, find the sequence of bits b
by,_1bn_o - - - bab1bg such that m = dec(b)

— Inputs: a natural number m

— Ouput: a sequence of bits b such that m = dec(b)

D McGill)

Decimal to binary conversion

e Algorithm:

1. Divide m by 2. This yields a quotient gg and a remainder
ro which is 0 or 1. (why?)

2. Divide gg by 2. This yields a quotient g1 and a remainder
r1

3. Divide g1 by 2. This yields a quotient g5 and a remainder
r2

5. ... until you reach 0

D McGill

39

Decimal to binary conversion

e Example: Consider m = 114

8.

. Divide 114 by 2. The result is 57 and the remainder is 0

. Divide 57 by 2. The result is 28 and the remainder is 1

Divide 28 by 2. The result is 14 and the remainder is 0

. Divide 14 by 2. The result is 7 and the remainder is 0

Divide 7 by 2. The result is 3 and the remainder is 1

. Divide 3 by 2. The result is 1 and the remainder is 1

Divide 1 by 2. The result is 0 and the remainder is 1

The result is 1110010

D McGill

40

e To check this:

dec(1110010)

1-2641-2°4+1-2%4+1-21
64 + 32 + 16 + 2
114

D McGill

41

Decimal to binary conversion

1. Let b be ™ (the empty sequence)
2. Let g be m

3. While g is not 0 repeat the following:

(a) Let new_g be g divided by 2, and

(b) Let r be the remainder of g divided by 2
(c) Append r in the front of the sequence b
(d) Set g to be new_q

(e) Repeat (from line 3)

D McGill

42

Decimal to binary conversion

e Trace of execution

e Example: Consider the case m = 44

iteration | q | new_q | r b
0 44
1 22 22 0 0"
2 11 11 0 00"
3 5 5 1 “100"
4 2 2 1| "1100"
5 1 1 0 "01100"
6 0 0 1 | "101100"

D McGill

43

Decimal to binary conversion

e Trace of execution

e Example: Consider the case m = 26

iteration | q | new_q | r b
0 26
1 13 13 0 0"
2 6 6 1 "10"
3 3 3 0 "010"
4 1 1 1| "1010"
5 0 0 1| "11010"

D McGill

44

Elements of algorithms

e Variables to store values (such as numbers, sequences,
etc.)

e Instructions organized and executed in sequence: order
of execution matters

e Instructions for:

— computing values (e.g. divide by)
— assigning values to variables

— repeating a set of instructions

— etc.

D McGill

45

Elements of algorithms

e Solving a problem: (General methodology)

1. Stating the problem
2. Understanding the problem -> Analysis
3. Designing a possible solution -> Algorithm

4. Implementing the algorithm using a programming
language

D McGill

46

Computer Architecture

e Components:

— CPU
— Memory
— 10O devices

— The Bus

o CPU:

— Registers (PC, IR, ...)

— ALU (Arithmetic-Logic Unit)
— Control Unit

— Decoder

D McGill

47

Computer Architecture

e A program is a sequence of instructions stored in memory

e Execution cycle: (Fetch-Decode-Execute)

1. Fetch: The PC (program counter) register contains
the address of the next instruction to be executed
(a) The Control Unit sends this address to memory
(b) Memory sends back the instruction stored in that
address
(c) The instruction is stored in the IR (instruction
register)

2. Decode: The instruction in the IR is passed to the
Decoder which sends it to the appropriate circuit for
execution

3. Execute: The instruction is performed.

(a) If the instruction is arithmetic or logic, it is executed
by the ALU

4. The PC register is updated to the next instruction

5. Repeat

D McGill

48

1729
1730

Computer Architecture

Memory CPU
Registers
Decoder
BUS ITFCQ: 1729
ADD
MULT
Control Unit ALU

D McGill

49

1729
1730

Computer Architecture

Memory CPU
Registers
Decoder
BUS ITFCQ: 1729
ADD 1729
——

MULT Fetch

Control Unit ALU

D McGill

50

Computer Architecture

Memory CPU
Registers
c Decoder
P 1729
Bus R D)
1729 ADD ADD
1730 MULT Toth
Control Unit ALU

D McGill

51

1729
1730

Computer Architecture

Memory CPU
Registers
Decode
- Decoder
1729
Bus R D)
ADD Decode&
MULT
Control Unit ALU

D McGill

52

1729
1730

Computer Architecture

Memory CPU
Registers
- Decoder
1729
Bus R D)
ADD
MULT Exe
Control Unit ALU
Execute

D McGill

53

1729
1730

Computer Architecture

Memory CPU
Registers
Decoder
BUS ITFCQ: 1730
ADD
MULT
Control Unit ALU

D McGill

54

Computer Architecture

e Program instructions:

— Instructions are numbers (ultimately in binary form)
* 00110101 represents ADD (adding numbers)
% 10101100 represents MULT (multiplication)
% 01010111 represents LOAD (load data from memory to a register)
% 10100111 represents STORE (stores data from a register to memory)

D McGill

55

Computer Architecture

e Instructions, or operators may have parameters

— Adding the contents of registers R1 and R2 and put
the result in R3:

00110101, 10001001, 10001010 J0001011]
ADD R1 R2 R3

x Loading data from memory cell 26 and put it in
register 2

11111001, 00011010 10001010,
LOAD 26 R2

D McGill

56

Computer Architecture

e Different kinds of processors have different instruction

sets (e.g. Pentium, PowerPC, Alpha, SPARC, Motorola)

— Each instruction set has different instructions,
and associates different numbers to each type of
Instruction

— Hence, a program for one type of processor cannot
be directly executed by a different processor.

e Portability: the ability to run (execute) a program in
more than one type of processor.

D McGill

57

Programming Languages

e A program as understood by the computer is a long
sequence of words (bits):

110110001110100010010001001010010100101001001010

— Machine Language

e But each instruction can be written in a fashion readable
by humans:

LOAD [26], Rl

LOAD 3, R2

ADD R1, R2, R3

STORE R3, [1700000029]

— Assembly language

e Assembler: a program that translates an assembly
language program into its machine language equivalent.

D McGill

58

Programming Languages

e Assembly is a low-level language

e High-level languages abstract the components of the
machine

X =y + 3;

— Java, C, C++, Python, Perl, ML, Scheme, Prolog,
Ada, Pascal, Basic, Fortran, Cobol, ...

e Abstracting the components is good: when
implementing an algorithm you don't have to think
about the component of the computer. You focus on
the problem.

e Compiler: a program that translates a high-level
language program into its machine language equivalent.

D McGill

59

A simple Java program

// This is a very, very, simple program

public class HelloWorld

{
public static void main(Stringl[] args)
{
System.out.println(‘“Hello, World!’’);
by
b

D McGill

60

A simple java program

e Java is case-sensitive:
HelloWorld
is not the same as

helloworld

D McGill

61

From code to a running program

e Editing

e Compilation/Interpretation

— Compilation:
* Translation
x Execution

— Interpretation:
x Execution

D McGill

62

Editing

Hel | oWworl d. j ava

Sourc_e code
file

Java

D McGill

63

Sourc_e code
file

Java

Compilers

Target code
file

Machine Language

D McGill

64

Source code
file

Java

Compilers

Target code
file

Pentium
Machine Language

Target code
file

PowerPC
Machine Language

Target code
file

Alpha
Machine Language

D McGill

65

Compilers

Sourc_e code
file

Java

Interpreter

D McGill

66

Compilers

nterpreter

Pentium

Source code

file terpreter 4

PowerPC

Java

nterpreter 3

Alpha

D McGill

67

Compilers

HelloWorld.java HelloWorld.class
Source code Target code
file file Interpreter
Java Java Bytecode JVM

(Java Virtual Machine)

D McGill

68

Compilers

nterpreter

Pentium

HelloWorld.java HelloWorld.class
Source code Target code
file file
Java Java Bytecode PowerPC

nterpreter 3

Alpha

D McGill

69

Programming Languages

e A programming language is a formal language to
describe algorithms

e A language is a means of communication

e A programming language is a means of communication
between a human and a computer, but also between
humans

e A programming language is formal: well-defined

D McGill

70

Languages

e Elements of a language

— Alphabet
— Syntax (grammar)
— Semantics (meaning)

e Elements of Java:

— Alphabet of Java: ASCII
— Syntax: 'constructs’

x Class definitions

x Method definitions

x Statements

x others
— Semantics: computation

D McGill

71

Errors

e FErrors:

— Compile-time errors
— Run-time errors

x Exceptions

x Logical

D McGill

72

Programming Languages

e Machine language (binary, processor dependent)

e Assembly language (textual, low-level, processor
dependent)

e High-level languages (textual, abstract, processor
independent)

— There are many high-level languages: Java, C, C++,
C#, ML, Haskell, Scheme, Prolog, Python, Perl, etc.
— Different types of languages:
x |Imperative
- Procedural
- Object Oriented
- Concurrent
x Declarative:
- Functional
- Logic
x Mixed

D McGill)

Executing programs

e Editing

e Compilation/Interpretation

— (Native) Compilation: Translation to machine
language + Execution
x Advantages: Fast, processor specific code is
generated
x Disadvantage: Needs a compiler for each type of
processor; generates a different target file for each
type of processor
— Interpretation: Direct execution
x Advantages: Execution is processor independent.
Does not generate a different target file for each
possible processor (portability)
* Disadvantage: Slow execution due to overhead of
Interpretation.
— Combined: Translation to bytecode + interpretation
of bytecode
x Best of both worlds: Only one file is generated
(portable) and it is faster to execute than direct
interpretation (but slower than native compilation.)

D McGill

74

Errors

e FErrors:

— Compile-time errors
— Run-time errors

x Exceptions

x Logical

D McGill

75

Errors

D McGill

76

Basic Java Syntax

A Java program is made up of one or more class
definitions

A class definition is made up of zero or more method
definitions

A method definition is made up of zero or more
statements and variable declarations

Roles:

— C(lasses: Modules and Types of objects
— Methods: procedures, functions, algorithms
— Statements: instructions

Pl
e
*

McGill

7

Basic Java Syntax

public class ClassName

{
// Body of ClassName

/] ...
// List of method definitions

D McGill

78

Basic Java Syntax

public class HelloWorld

{
// Body of ClassName

/] ...
// List of method definitions

D McGill

79

Basic Java Syntax

public class Classname

{
// method header
{
// method body: list of statements
Iy
by

D McGill

80

Basic Java Syntax

public class HelloWorld

{
public static void main(String[] args)
{
System.out.println(‘“Hello’);
System.out.println(‘‘Good bye’’);
¥
by

D McGill

81

Bad Java Syntax

public class HelloWorld

{
System.out.println(‘‘Hello”’) ;

System.out.println(‘‘Good bye”’);

D McGill

82

Bad Java Syntax

public static void main(String[] args)

{
System.out.println(‘‘Hello”’) ;

System.out.println(‘‘Good bye”’);

D McGill

83

Bad Java Syntax

public static void main(String[] args)

{
public class HelloWorld

{
System.out.println(‘‘Hello”’);

System.out.println(“‘Good bye”’);

D McGill

84

Indentation

public class HelloWorld

{
public static void main(Stringl[] args)
{
System.out.println(‘‘Hello”’);
System.out.println(‘‘Good bye’’);
b
b

D McGill

85

Indentation

public class HelloWorld

{

public static void main(Stringl[] args)
{

System.out.println(‘“‘Hello”’);

System.out.println(‘‘Good bye’’);

¥
¥

D McGill

86

Indentation

public class HelloWorld
{

public static void main(Stringl[] args)
{
System.out.println(‘‘Hello”’);
System.out.println(‘‘Good bye’’);

¥
}

D McGill

87

Indentation

public class HelloWorld{public static void main(St
ring[] args){System.out.println(‘‘Hello’’);System.ou
t.println(““Good bye’’);}}

D McGill

88

User Interface

e The user interface of a program is the way it interacts
with the user: keyboard/mouse/windows/text

e Graphical User Interface:

— Windows: buttons, text boxes, slidebars, graphics,
etc.
— Input with mouse and keyboard.

e Textual User Interface:

— Console window: plain text
— Input: keyboard only
— Output:

System.out.println(‘““text”’) ;

D McGill

89

Introduction to statements

e The print statement

System.out.println(string_literal);
System.out.print(string_literal);

e String literals:

““(almost)any characters”

“This 1s a string literal”

‘“String literals can contaln almost any character,
CCa

€

(‘24,’

22

D McGill

90

Introduction to statements

e String concatenation:

string_literal + string literal
string_literal + number_literal

“This 1s a ’*+‘‘message”’
“This 1s a message’
‘“There are ’+70+‘‘ students 1in this class”

e String literals with numbers are not numbers: <17’ is
not the same as 17

C‘17,’ + C¢29,’
«“1729”
while

17 + 29

46

D McGill

91

Simple programs

// File: PrintingStuff.java
public class PrintingStuff

{
public static void main(String[] args)
{
System.out.println(““This trivial program j
System.out.println(‘“‘prints this text to a
System.out.println(‘“Window.”’) ;
¥
b

D McGill

92

Variables

e A variable is a memory location
e A variable can contain information

e A variable has a symbolic name

age

D McGill

93

Variables

age

20

D McGill

94

Variables

last_name

age

GPA

D McGill

95

Variables

last_name

age

GPA

"Smith"

20

3.5

D McGill

96

Variables

last_name

age

GPA

"Smith"

21

3.7

D McGill

97

Variables

last_name

age

GPA

"Smith"

21

3.7

String

int

float

D McGill

98

Variable declaration

e A variable declaration is a statement that declares tha
a variable is going to be used.

e A variable declaration goes inside some method
e A variable declaration has the form:

type 1identifier,
e Examples:

String last_name;
int age;
float GPA;

D McGill

99

Assignment

e An assignment is a statement that gives a value to a
variable

e An assignment goes inside some method
e An assignment has the form:

variable = value;

e |ts meaning it to put the value into the memory location
of the variable

e Examples:

last_name = ““Smith’’;
age = 20;

e Note that the following are incorrect:

20 = age;
“Smith’’ = last_name;

D McGill

100

Assignment

e The variable must be declared before being assigned a
value

String last_name;
last_name = ““Smith’’;

e But the following is wrong:

age = 20;
int age;

e The type of the value must be the same as the type of
the variable

last_name = 20; // Incorrect
age = “‘Smith’’; // Incorrect

D McGill

101

Variables and String expressions

e Variables can be used with concatenation in String
expressions

‘““your age 1s ’’tage
e is equivalent to
““your age 1is 19”

e if the variable age contains the value 19

D McGill

102

A simple program

public class PrintData

{

public static void main(String[] args)

{
String last_name;
int age;
last_name = ““‘Smith’’;
age = 20;
System.out.println(““Your last name is >’ + last_name);
System.out.println(“‘You are > + age + ‘“ years o0ld”’);

D McGill

103

The end

D McGill

104

