Errors

e FErrors:

— Compile-time errors
— Run-time errors

x Exceptions

x Logical

D McGill

Errors

D McGill

Basic Java Syntax

e A Java program is made up of one or more class
definitions

e A class definition is made up of zero or more method
definitions

e A method definition is made up of zero or more
statements and variable declarations

e Roles:

— C(lasses: Modules and Types of objects
— Methods: procedures, functions, algorithms
— Statements: instructions

D McGill

Basic Java Syntax

public class ClassName

{
// Body of ClassName

/] ...
// List of method definitions

D McGill

Basic Java Syntax

public class HelloWorld

{
// Body of ClassName

/] ...
// List of method definitions

D McGill

Basic Java Syntax

public class Classname

{
// method header
{
// method body: list of statements
Iy
by

D McGill

Basic Java Syntax

public class HelloWorld

{
public static void main(String[] args)
{
System.out.println(‘Hello’);
System.out.println(‘‘Good bye’’);
¥
by

D McGill

Bad Java Syntax

public class HelloWorld

{
System.out.println(‘‘Hello”’) ;

System.out.println(‘‘Good bye”’);

D McGill

Bad Java Syntax

public static void main(String[] args)
{
System.out.println(‘‘Hello”’) ;
System.out.println(‘‘Good bye”’) ;

D McGill

Bad Java Syntax

public static void main(String[] args)

{
public class HelloWorld

{
System.out.println(‘‘Hello”’);

System.out.println(“‘Good bye”’);

D McGill

10

Indentation

public class HelloWorld

{
public static void main(Stringl[] args)
{
System.out.println(‘‘Hello”’);
System.out.println(‘“‘Good bye”’);
b
b

D McGill

11

Indentation

public class HelloWorld

{

public static void main(String[] args)
{

System.out.println(‘‘Hello”’);

System.out.println(‘‘Good bye’’);

¥
¥

D McGill

12

Indentation

public class HelloWorld
{

public static void main(Stringl[] args)
{
System.out.println(‘‘Hello”’);
System.out.println(‘‘Good bye’’);

¥
}

D McGill

13

Indentation

public class HelloWorld{public static void main(St
ring[] args){System.out.println(‘“Hello’’);System.ou
t.println(““Good bye’’);}}

D McGill

14

User Interface

e The user interface of a program is the way it interacts
with the user: keyboard/mouse/windows/text

e Graphical User Interface:

— Windows: buttons, text boxes, slidebars, graphics,
etc.
— Input with mouse and keyboard.

e Textual User Interface:

— Console window: plain text
— Input: keyboard only
— Output:

System.out.println(‘““text”) ;

D McGill

15

Introduction to statements

e The print statement

System.out.println(string_literal);
System.out.print(string_literal);

e String literals:

““(almost)any characters’

“This 1s a string literal”

‘“String literals can contaln almost any character,
CCa

€

(‘24,’

22

D McGill

16

Introduction to statements

e String concatenation:

string_literal + string literal
string_literal + number_literal

“This 1s a ’+‘‘message”’
“This 1s a message’
‘““There are ’+70+‘‘ students 1in this class”

e String literals with numbers are not numbers: <17’ is
not the same as 17

C‘17,’ + C¢29,’
«“1729”
while

17 + 29

46

D McGill

17

Simple programs

// File: PrintingStuff.java
public class PrintingStuff

{
public static void main(String[] args)
{
System.out.println(““This trivial program j
System.out.println(‘“‘prints this text to a
System.out.println(‘“Window.”’) ;
¥
b

D McGill

18

Variables

e A variable is a memory location
e A variable can contain information

e A variable has a symbolic name

age

D McGill

19

Variables

age

20

D McGill

20

Variables

last_name

age

GPA

D McGill

21

Variables

last_name

age

GPA

"Smith"

20

3.5

D McGill

22

Variables

last_name

age

GPA

"Smith"

21

3.7

D McGill

23

Variables

last_name

age

GPA

"Smith"

21

3.7

String

int

float

D McGill

24

Variable declaration

e A variable declaration is a statement that declares tha
a variable is going to be used.

e A variable declaration goes inside some method
e A variable declaration has the form:

type 1identifier,
e Examples:

String last_name;
int age;
float GPA;

D McGill

25

Assignment

e An assignment is a statement that gives a value to a
variable

e An assignment goes inside some method
e An assignment has the form:

variable = value;

e |ts meaning it to put the value into the memory location
of the variable

e Examples:

last_name = ““Smith’’;
age = 20;

e Note that the following are incorrect:

20 = age;
“Smith’’ = last_name;

D McGill

26

Assignment

e The variable must be declared before being assigned a
value

String last_name;
last_name = ““Smith’’;

e But the following is wrong:

age = 20;
int age;

e The type of the value must be the same as the type of
the variable

last_name = 20; // Incorrect
age = “‘Smith’’; // Incorrect

D McGill

27

Variables and String expressions

e Variables can be used with concatenation in String
expressions

‘““your age 1s ’’tage
e is equivalent to
““your age 1is 197

e if the variable age contains the value 19

D McGill

28

A simple program

public class PrintData

{

public static void main(String[] args)

{
String last_name;
int age;
last_name = ““‘Smith’’;
age = 20;
System.out.println(““Your last name is >’ + last_name);
System.out.println(“‘You are > + age + ‘“ years o0ld”’);

D McGill

29

Basic java programs

public class ClassName

{
public static void main(String[] args)
{
// Statements
by
by

D McGill

30

Statements

e Print statement
System.out.println(string_expression) ;
e Variable declaration
type 1identifier;
® Assignment

variable = value;

e Statements in a method are executed in sequential order
from top to bottom

D McGill

31

Assignment

® [n an assignment

variable = value;

e the variable must have been declared before

x = 7; // incorrect
int x;

e the type of the variable must match the type of the
value

int Xx;
x = 7, // incorrect

D McGill ,

Sequential execution

public class (OrderTest

{

public static void main(Stringl[] args)

J
J
J

J

o
Il
o W N oo

a = 8;
System.out.println(a);
System.out.println(b);

D McGill

33

Sequential execution

public class (OrderTest

{

public static void main(Stringl[] args)

J
J
J

J

o
I
N 60 O T

b = 3;
System.out.println(a);
System.out.println(b);

D McGill

34

Some syntactic shortcuts

e Several variables of the same type can be declared in
the same variable declaration:

type varl, var2, ..., varn,
e Examples:

int a;
int b;

iIs equivalent to

int a, b;

D McGill

35

Some syntactic shortcuts

e A variable can be initialized when declared

int a;
a = 2;

Is equivalent to
int a = 2;
e But a variable cannot be redeclared, so

int b = 3;
int b = 2;

s incorrect, while the following is correct

int b = 3;
b = 2;

D McGill

36

User Interface

e Interaction between the user and some program

Textual Ul

— Output:
System.out.println(string expression);
— Input:

scanner.nextInt () ;
scanner.nextLine();

e Examples:
Scanner myScanner = new Scanner (System.in);

int n;
n = myScanner.nextInt();

B McGill .

User Interface

import java.utll.Scanner;
public class UserInputTest {
public static void main(Stringl[] args)

{

}

Scanner myScanner = new Scanner (System.in);

String name;

int age;

System.out.print (“Enter your name: ’’);
name = myScanner.nextLine();
System.out.print (“Enter your age: ’’);
age = myScanner.nextInt();

System.out.println(‘“Your name is ’’ + name);

System.out.println(‘“You are >’ + age + ¢ years old”);

D McGill

38

D McGill

39

Data types

e Each variable has a data type

String major;
int age;

e A data type is a set of possible values

— int is the set of integers

— String is the set of strings

— float is the set of rational numbers written as a
decimal expansion

— double is the set of rational numbers as a decimal
expansion, with double precision

— char is the set of characters

— boolean is the set {true, false}

— byte is the set of bytes, writen in decimal

D McGill .

Data types

Data type Possible values Examples
int all integers between —23% and 23! — 1 0,1 2 -3 -1729
String all character strings enclosed in © " “hello bye”, ™', "a"
float rationals between —3.4 x 10°% and 3.4 x 10°® | 0.0f, -2.3f, 111.001f
double rationals between —1.7 x 103%® and 1.7 x 10398 0.0, -2.3, 111.001
char all individual characters enclosed in "’ A, b2+ A
boolean only true and false true, false
byte all integers between -128 and 127 -128, 0, 8
long integers between —2%3 and 293 — 1 0l, 655361, -3l
short integers between —2%° and 21° — 1 -3,-2,0,1, 4

D McGill

41

Data types

Data type Size Range
boolean 8 bits (7 unused) 0-1
byte 8 bits —27t0 2" -1
char 8 bits (ASCII), 16 bits (Unicode) | 0 to 2% (ASCII) 0 to 2'° (Unicode)
short 16 bits —25 40 215 -1
int 32 bits —291 10 231 — 1
long 64 bits —263 40263 1

D McGill

42

Real numbers

@

e = 2.718...

_1iys [1618
= 0.618...

D McGill

43

Assignment and data types

int x = 3.141592;
float pi = 3.141592f;
double e = 2.718;
float phi = 1.618;
int n = 32768;

int m = 32767;

long o = 327681,
String letter = ‘A’;
char letter2 = ‘A’;
char letter3 = “B’’;

// Line
// Line
// Line
// Line
// Line
// Line
// Line
// Line
// Line
// Line

O© 0 NO Ok WIN -

—
-

D McGill

44

Arithmetic expressions

e If a variable is of a numeric type (int, float, long, etc.)
then an assignment can take the form

variable = arithmetic_expression;

e where arithmetic_expression is an expression involving:

— numbers (of the appropriate type)
— operators (+, -, *, /, %)

— variables (of numeric type)

— parenthesis

e Example:

double grade, assignments, midterm, final;
assignments = 97.5;
midterm = 75.5;
final = 80.0;
grade = assignments * 0.25
+ midterm * 0.20
+ final * 0.55;

D McGill

45

Arithmetic expressions

e Parenthesis are used to group operations:

double grade, assignments, midterm, final;
double al = 20, a2 = 19, a3 =9, a4 = 14, ab = 18;
assignments = al + a2 + a3 + a4 + ab;
midterm = 75.5;
final = 80.0;
grade = assignments * 0.25
+ midterm *x 0.20
+ final * 0.55;

Is equivalent to

double grade, midterm, final,;
double al = 20, a2 = 19, a3 = 9, a4 = 14, ab = 18;
midterm = 75.5;

final = 80.0;

grade = (al + a2 + a3 + a4 + ab) * 0.25
+ midterm * 0.20
+ final * 0.55;

D McGill .

Operator precedence
e Operators are evaluated depending on their precedence:
result = 6 + 5 *x 3;

e |f the operators did not have precedence, the expression
would have as value 33

e But it's real meaning is:
result = 6 + (b * 3);

e Which evaluates to 6 + 15 which is 21.

e Operators have “associativity':
result = 6 + 5 + 3 + 9;
e is evaluated as

result = ((6 + 5) + 3) + 9;

D McGill

47

Operator precedence

Precedence level | Operator Operation Associativity

1 T Hnary p.lus right to left
- unary minus
* multiplication

2 / division left to right
% remainder (modulo)
+ addition

3 - substraction left to right
+ string concatenation

D McGill

48

Operator precedence

r=8/2/ 2;
is evaluated as

r=((8/2)/2);

and

s =12 x 2 - - 3;
is evaluated as
s = (12 * 2) - (-3);

and
t=-2%x4+ - (a -1);

is evaluated as
t = ((-2) *x4) + (- (a - 1));

D McGill

49

Precedence

a + b + ¢ 4+ d +
1 2 3 4

a + b * ¢ - d /
3 1 4 2

is the same as (a+(b*c))-(d/e)

D McGill

50

Sequential execution

double a, b;
a = 2.0;

b = a;

a = 3.0;

System.out.println(a);
System.out.println(b);

D McGill

51

Sequential execution

double a, b;
a = 2.0;

b = a;

a = 3.0;

System.out.println(a);
System.out.println(b);
// Prints

// 3.0

// 2.0

D McGill

52

Sequential execution

D McGill

53

Sequential execution

D McGill

54

Sequential execution

D McGill

55

Sequential execution

D McGill

Sequential execution

double a, b;
a = 2.0;

a = 3.0;

b = a;

System.out.println(a);
System.out.println(b);

D McGill

57

Sequential execution

double a, b;
a = 2.0;

a = 3.0;

b = a;

System.out.println(a);
System.out.println(b);
// Prints

// 3.0

// 3.0

//

// a and b have the same contents (the same value)
// but they are different variables

D McGill

58

Sequential execution

D McGill

Sequential execution

D McGill

Sequential execution

D McGill

Sequential execution

double a, b;
a = 2.0;
b=-1.0;

a = b;

b = a;

System.out.println(a);
System.out.println(b);

D McGill

62

Sequential execution

double a, b;
a = 2.0;
b=-1.0;

a = b;

b = a;

System.out.println(a);
System.out.println(b);

// Prints
// -1.0
// -1.0

D McGill

63

Sequential execution

D McGill

64

Sequential execution

a -1.0
!
b -1.0

D McGill

65

Sequential execution

a -1.0
b -1.0

D McGill

Sequential execution

double a, b, c;

a = 2.0;
b=-1.0;
C = a;

a = b;

b = c;

System.out.println(a);
System.out.println(b);

D McGill

67

Sequential execution

double a, b, c;

a = 2.0;
b=-1.0;
C = a;

a = b;

b = c;

System.out.println(a);
System.out.println(b);
// Prints

// -1.0

// 2.0

// This implements a ’swap’ between variables

D McGill

68

Sequential execution

D McGill

69

Sequential execution

a 2.0

D McGill

Sequential execution

2.0

-1.0

D McGill

71

Sequential execution

2.0

-1.0

—

C

2.0

D McGill

72

Sequential execution

-1.0

1 c

2.0

-1.0

D McGill

73

Sequential execution

- 1.

0

2.

0

C

2.

0

- —

D McGill

74

Sequential execution

ORDER MAT TERS

D McGill

More on arithmetic operations

e The remainder operator % computes the remainder of
an integer division (not percentages!)

— 8 % 2 evaluates to 0
— 7 % 2 evaluates to 1
— 8 % 3 evaluates to 2
— 3 9% 5 evaluates to 5

e In general, for every integers @ and b, 0 < a%b < b

e Division has a different meaning for integers and for
floats and doubles

e The division between two integers is an integer

e The division between a float or double and an integer is
a float or double

— 8 / 3 evaluates to 2
— 8.0 / 3 evaluates to 2.666666. ..

D McGill

76

Statements

e Variable declaration

type identifier,

e Assignment

variable = expression;

e User Interface: output

System.out.println(string_expression) ;

D McGill

7

e User Interface: input

variable = scanner.nextType () ;

D McGill

78

Primitive Data Types

General category | Type Description Examples
Int Integers 01.-3
long Long integers 655371
Numeric short Short integers 2,-6
byte Bytes 255
float Rationals 1.33f
double Rationals 1.618
char Single characters x,
Text . WL
String Sequences of characters abc
Logic boolean Truth values true, false

D McGill

79

Syntax of string expressions

e A string expression € is either

— a string literal (characters enclosed in * ")
— or a variable of String type
— or an expression of the form
€1 + €2
where e is a string expression, + is the concatenation
operator, and es is either a string expression or an
arithmetic expression or a character expression

e Examples:

‘““this 1s a long literal”
“my name 1s ’’ + name

““the average is > + (a + b)/2
“I am taking > + n + ‘“ courses”
“My initials are > + ‘E’ + ‘P’

D McGill .

Method structure

public class SomeProgram {
public static void main(String[] args)
{
// List of statements
by
b

D McGill

81

Method structure

public class SomeProgram {
public static void main(String[] args)
{
int n = 4;
“I am taking >’ + n + ‘“ courses’’; // WRONG!
by
b

D McGill

82

Method structure

public class SomeProgram {
public static void main(String[] args)
{
int n = 4;
System.out.println(“‘I am taking > + n + ‘ courses’);
by
b

D McGill

83

Method structure

public class SomeProgram {
public static void main(String[] args)
{
int n = 4;
String message = ‘I am taking > + n + ‘° courses’’;
¥
¥

D McGill

84

Method structure

public class SomeProgram {
public static void main(String[] args)
{
float a =
(a +b) /
by

4, b = 2;
2 // WRONG!

¥

D McGill

85

Method structure

public class SomeProgram {
public static void main(String[] args)
{
float a =4, b = 2, c;
c=(a+b)/ 2;
by
b

D McGill

86

Statements vs expressionfs

e A statement is not an expression
e An expression is not a statement

e An expression is a term (e.g. x*2, “a"+b, etc.) inside a
statement, which has a value.

e A statement is an instruction to be executed (e.g.
assignment, print, etc.) and it has no value.

e A method's body is a list of statements, not a list of
expressions

D McGill

87

Strings

String first_name, last_name, temp;
first_name = "Adam";

last_name = Smith;
System.out.println(first_name) ;
System.out.println(last_name);

D McGill

88

Strings

String first_name, last_name, temp;
first_name = "Adam";

last_name = Smith;
System.out.println(first_name) ;
System.out.println(last_name);

B McGill

89

Strings

String first_name, last_name, temp;
first_name = "Adam";

last_name = "Smith";
System.out.println(first_name) ;
System.out.println(last_name);

B McGill

90

Sequential execution

String first_name, last_name;
first_name = ‘“‘Adam’’;

last_name = “‘Smith’’;

last_name = first_name;
first_name = last_name;
System.out.println(first_name);
System.out.println(last_name);

D McGill

91

Adam
Adam

Sequential execution

D McGill

92

Sequential execution

String first_name, last_name, temp;
first_name = "Adam";

last_name = "Smith";

temp = last_name;

last_name = first_name;

first_name = temp;
System.out.println(first_name);
System.out.println(last_name);

D McGill

93

Smith
Adam

Sequential execution

D McGill

94

Sequential execution

String first_name, last_name, temp;
first_name = "Adam";

last_name = "Smith";

temp = last_name;

last_name = first_name;

first_name = temp;
System.out.println(first_name);
System.out.println(last_name);

D McGill

95

Sequential execution

String first_name, last_name, temp;
first_name = "Adam";

last_name = "Smith";

temp = last_name;

first_name = temp;

last_name = first_name;
System.out.println(first_name);
System.out.println(last_name);

D McGill

96

Smith
Smith

Sequential execution

D McGill

97

Assignment

e Assignment is not equality

e The right-hand side of an assignment can contain the
same variable as the left hand-side:

int count = 0;

// Here the value of count is O
count = count + 1;

// Here the value of count is 1

String name;
name = ‘“‘Bond’’;
name = ‘“‘James ’’ + name;

e String concatenation is not commutative (a+b is not
b+a)

D McGill

98

Operators and types

e The meaning of an operator depends on its context, and
in particular on the types of its arguments

int a =8, b =3, c;
c =a/ b; // Integer division

double d = 8.0, e = 3.0, £f;
f =d/ e; // Floating point division

int g,

g =a+ b; // Addition

String h = “one”, 1 = “two”’, j;
j =h+ 1i; // String concatenation

D McGill

99

Assignment

e If variable is of numeric type (int, float, etc.)
variable = arithmetic_expression;

e If variable is of String type
variable = string expression,

e |f variable is of boolean type

variable = boolean_expression;

D McGill

100

Boolean expressions

true
false

true && true

false || true
Ifalse
ltrue && false || !false

I (sunny && false)

2 +x=90&& b <8 || ¢ == true

D McGill

101

Syntax of boolean expressions

e A boolean expression e is either

— the constant true
— or the constant false
— or a boolean variable
— or an expression of the form
e1 boolop es
where e1 and e are boolean expressions and boolop
is one of the binary boolean operators: && (and) or
I (or
— or an expression of the form
le/
where €’ is an boolean expression and ! is the unary
boolean operator for negation.
— or an expression of the form
(€')
where €’ is an boolean expression
— or an expression of the form
e1 relop es
where e and eg are arithmetic expressions and relop
is one of the binary relational operators: <, <=,
==, >= > I=

D McGill

102

Boolean expressions

boolean a, b;
a = true;
b = la;

int x, vy, d;

boolean c;

c=x-y>04&& x -y <d;
c=(x-y)>=0) & (x -y) <d);

float temp = -25.2f, windchill = -35.2f;
boolean sunny = true, rain, windy, cold, ski;
rain = !sunny;

windy = windchill - temp > -10.0f;

cold = temp < -20.0%f;

ski = sunny && 'windy || !cold;

D McGill

103

Boolean expressions

float temp = -25.2f, windchill = -35.2f;
boolean sunny = true, rain, windy, cold, ski;
rain = !sunny;

windy = windchill - temp > -10.0f;

cold = temp < -20.0f;

ski = sunny && 'windy || !cold;

rain = true;

boolean b = true;
b = false;

b = 'b;

b = true && false;

D McGill

104

Precedence

Precedence | Operator | Operation Associativity
+ Unary plus
1 - Unary minus right to left
! Logical negation (NOT)
* Multiplication
2 / Division left to right
% Remainder (modulo)
+ Addition
3 - Substraction left to right
String concatenation
< Less than
<= Less than or equal to
4 Left to right
> Greater than
>= Greater than or equal to
== Equals to
5 Left to right
= Different to
6 && Logical conjunction (AND) Left to right
7 I Logical disjunction (OR) Left to right

D McGill

105

Precedence

4 4+ x == 9 && b < 8 || I ¢
2 4 5 3

is the same as (((4+x)==9)&&(b<8))||('c)

4 + x == 9 & b < 8 || I (1 < x)
3 5 6 4 1

is the same as (((4+x)==9)&&(b<8))||(!(1<x))

D McGill

106

Semantics of expressions

e The meaning of an expression is the value of the
expression

— An arithmetic expression is evaluated to a number

— A string expression is evaluated to a string

— A boolean expression is evaluated to a truth-value
(true or false)

D McGill .

Semantics of boolean expressions

e The value of true is true
e [he value of false is false

e [he value of a boolean variable is whatever value it
contains

e The value of e1&&es is true if the values of €1 and e5
are both true, and false otherwise

e The value of e1||eq is true if the value of e; or the value
of es true, and false if the values of both are false

e The value of le is true if the value of e is false, and false
if the value of e is true

D McGill

108

Semantics of boolean expressions

e The value of a1 < asg is true if the value of aq is strictly
less than the value of as

e The value of @y <= aq is true if the value of ay is less
or equal to the value of as

e The value of a; > ag is true if the value of aq is strictly
greater than the value of as

e The value of a; >= a9 is true if the value of aq is
greater or equal to the value of as

e The value of a; == a9 is true if the value of aq is
equal to the value of as

e The value of ay! = ag is true if the value of ag is
different to the value of a9

D McGill

109

Semantics of boolean expressions

e Truth tables

e Assume that a and b are boolean expressions

da

la

true || false

false || true

a b a && b
true | true true
true | false false
false | true false
false | false false

a b allb
true | true || true
true | false || true
false | true || true
false | false | false

D McGill

110

Semantics of boolean expressions

e The value of

true && false || !false
Is the same as the value of

(true && false) || (!false)
which is

(true && false) || true
which is

false || true
which is

true

D McGill

111

e [Exclusive or: either a is true or b is true but not both

Semantics of boolean expressions

2 && b || la && b

J b b | a&&!b I3 la& &b || a&&!b || la&é&b
true | true || false | false false | false false
true | false || true true false | false true
false | true || false | false true true true
false | false || true | false true | false false

D McGill

112

Semantics of boolean expressions

e What is the value of 44x==9 && b < 8 || Ic 7

D McGill

113

Semantics of boolean expressions

e What is the value of 44x==9 && b < 8 || Ic 7

e |t depends on the values of the relational expressions
(44x==9), (b<8) and the boolean expression c.

e These expressions depend on the values of x, b and ¢,
which we do not know

e __but we can consider the all the possible truth values
for each subexpression:

D McGill

114

Semantics of boolean expressions

d-x== b<8 C lc 44x==9 && b<8 (((44+%x)==9)&&(b<8))||('c)
true true | true false true true
true true false true true true
true false true false false false
true false false true false true
false true | true false false false
false true false true false true
false false true false false false
false false false true false true

D McGill

115

temp > -20.0 || 'windy && sunny

Semantics of boolean expressions

temp>-20.0 | windy | sunny lwindy | lwindy && sunny (temp > -20.0) || (lwindy && sunny)
true true true false false true
true true false false false true
true false true true true true
true false false true false true
false true true false false false
false true false false false false
false false true true true true
false false false true false false

D McGill

116

Note about variables

e The name of a variable is just a symbolic name to make
the program more readable

e The name of the variable does not give the variable any
special meaning

double temp = -27.0;
boolean cold;
cold = temp <= -20.0;

e Does not mean that it is actually cold!

e |t only means

double x = -27.0;
boolean y;
y = x <= -20.0;

e But it is useful for the programmer to give variables
meaningful names

D McGill

117

Data conversion

e Sometimes it is useful to look at data as if they were from a different type

e For example:

— Adding an integer and a double
— Obtaining the ASCII code of a character

e Forms of data conversion:

— Implicit:
x Assignment conversion
x Promotion

— Explicit: Casting

D McGill

118

Data conversion

e Assignment conversion: A value of one type is assigned
to a variable of a different type, as long as the types are
compatible

int n = 7;

double d = n;

long k = n;

int m = d; // Wrong: compile-time error

e Promotion: an expression ‘promotes’ the types of its
operands to its "largest” type

int m = 8;
float x = 3.0f, vy;
y = x + m;

D McGill

119

Data conversion

e Casting expressions (not a statement)
(type) expression
e Examples:

int n = 3;
double p;
p = (double)n + 4.0;

int a = 3, b = 8;

float c, d;

c = b/a;

d = (float)b/a;

System.out.println(c); // 2.0
System.out.println(d); // 2.666666. ..

D McGill

120

Data conversion

double r = 2.41;
int a;
a =r1; // Error

D McGill

121

Data conversion

double r = 2.41;
int a;
a = (int)r; //0K: Narrowing casting

D McGill

122

Data conversion

e There are two types of casting:

— Narrowing conversions: from a type which requires
more memory to a type that requires less

— Widening conversions: from a type which requires
less memory to a type which requires more

e |f expression has type t, and t requires more memory
than type s, then (s)expression is a narrowing
conversion (e.g. int to byte, double to float,
float to int, ...)

e |f expression has type t, and t requires less memory
than type s, then (s)expression is a widening
conversion (e.g. byte to double, long to int,)

D McGill

123

Data conversion

e Widening conversions are safe: no loss of information

e Narrowing conversions are not safe: possible loss of
information

float x = 2.71%;
int i = (int)x;

/) i ==

int k = 130;

byte b = (byte)k;
// b = -126

D McGill

124

Data conversion

v/é
byte values

129 108 127
128 = -128 byte b b+k28=b
129 = -127 Int i i+k232=]
256 = 0 k is any integer

257 =1

D McGill

125

The end

D McGill

126

