Statements

e Variable declaration

type variable;

e Assignment

variable = expression,

e Conditionals
if (cond) { statements; }
and

if (cond) { stmtsl; } else { stmts2; }
e Loops
e Method invocation (aka method call)
objectreference .methodname (parameters) ;

or

classname .methodname (parameters) ;

D McGill

Objects and Classes

e Defining a class:

public class BankAccount
{

String owner;

double balance;

void withdraw(double amount)

{
/] ...
¥

void deposit(double amount)

{
/] ...
¥

e Note: only one class in a program has a main method

D McGill

Objects and Classes

accountl
-
owner Jean
balance |$800.00

account2
4
owner Amy
balance $850.0
.

D McGill

Classes and Objects

Declare a variable:
BankAccount accountl;

To create objects we use the new operator (with
assignment)

accountl = new BankAccount();
To apply operations to objects we use the dot operator:
accountl.deposit (200.00) ;

You cannot apply methods without first creating objects

D McGill

Objects and Classes

public class Test

{

public static void main(String[] args)

{
BankAccount accountl;
accountl = new BankAccount();
accountl.deposit (200.0) ;
BankAccount account?2;
account? = new BankAccount();
account?.deposit (150.0) ;

e EFach object has its own separate identity, its own
individual state

D McGill

Objects and Classes

accountl . withdraw (150.00);
object method parameters

e Applying a method to an object affects only the object
it is being applied to.

accountl | account2 I
() ()
owner Jean owner Amy
balance |$650.00 balance | $850.0
\. J . J

System.out .println (“text”);

/0

Vo

ob}rect method parameters

D McGill

Scanner, Classes and Objects

int n;
Scanner myScanner;
myScanner = new Scanner (System.in);

n = myScanner.nextInt();

B McGill

Strings

String greetings;
greetings = ‘“‘Hello’’;

D McGill

Strings

String greetings;
greetings = new String(‘‘Hello”’);

B McGill

Strings, Classes and Objects

i 1

b o n jJ o u r
01 2 3 4 5 06

® |n strings,

— the first character has index 0
— the second character has index 1
— the third character has index 2

— the last character has index I-1, where | is the length
of the string

D McGill .

Strings

String greetings;

greetings = new String(‘‘Hello”’);

int n;
n = greetings.length();

char letter;
letter = greetings.charAt(2);

if (greetings.equals(‘hello”))

{
System.out.println(letter);

D McGill

11

The Random class

e Random number generation

e Random class methods

int nextInt()

int nextInt(int max)
float nextFloat()
double nextDouble()

e Must import the class from the java.util package

D McGill y

The Random class

import java.util.Random;
public class Test

{
public static void main(Stringl] args)
{
Random generator;
generator = new Random();
double x;
x = generator.nextDouble();
X =X * 5.0;

D McGill

13

Formatting numbers

e NumberFormat and DecimalFormat classes from the
java.text package

e Methods

DecimalFormat (String pattern)
String format(double number)
void applyPattern(String pattern)

D McGill

14

Formatting numbers

import java.text.DecimalFormat;
public class Test

{

public static void main(Stringl] args)

{
double n = 1.618314141,;

String output = “’;

DecimalFormat formatter;

formatter = new DecimalFormat (‘‘O.##’) ;
output = formatter.format(n);

System.out.println(output);

D McGill

15

Classes and Objects

e Declare a variable:
ClassName variable;

e To create objects we use the new operator (with
assignment)

variable = new ClasslName () ;
e To apply operations to objects we use the dot operator:
variable .methodname (parameters) ;

e You cannot apply methods without first creating objects

D McGill

16

Static methods

e So far, all method calls that we have used take the form

objectreference .methodname (parameters)

e But there are some methods that take the form

ClassName .methodname (parameters)
e These are called static methods

e Static methods do not represent operations on objects,
but services provided by a class

e For example:

x = Math.sqrt(3);

D McGill

17

Static methods and class libraries

double cathetusl, cathetus2, hypothenuse;

cathetusl =
cathetus? =
hypothenuse

3.

4

0;

.0;

Math.sqrt(Math.pow(cathetusl, 2) +
Math.pow(cathetus2, 2));

D McGill

18

Static methods and class libraries

The Math class has many useful static methods, such

as:
Method Description
static int abs(int num) returns the absolute value of num
static double pow(double num, double power) | returns numP°"®*
static double sqrt(double num) returns 4/num
static double sin(double angle) returns sin(angle)
static double cos(double angle) returns cos(angle)
static double tan(double angle) returns tan(angle)
static double floor(double num) returns the largest integer less or
static double ceil(double num) returns the smallest integer great

D McGill

19

X+t

means

means

X += 3;

means

X = X + 3;

Some shortcuts

D McGill

20

Some shortcuts

e ++and -- can be used inside arithmetic expressions (but
it is not recommendable)

X = y-- % 2;
means:

X =y % 2;

y=y -5
and

X = --y *x 2;
means

y =y -1

X =Yy *x 2;

D McGill

21

Some syntactic shortcuts

e The ++ and -- operators can be used within expressions
(but they shouldn't)

v = 3;
if (v++ >= 4) System.out.println(“‘A”’);

is not the same as

v = 3;
if (++v >= 4) System.out.println(‘‘A”);

D McGill

22

Some syntactic shortcuts

e The ++ and -- operators affect evaluation of conditions

v = 4;
if (v++ >= 4 && v < 5) System.out.println(‘‘A”’)

is not the same as

v = 4;
if (v < 5 && v++ >= 4) System.out.println(‘‘A”’)

D McGill

23

Characters

e Values of the char data type can be compared using
the traditional relational operators:

char a = ’P’, b = ’Q’;
boolean ¢, d, e, f, g, h;

c = a == b; // c == false
d =a !=b; // d == true
e = a < b; // e == true
f =a>Db; // f == false
g = a <= b; // g == true
h = a > b; // h == false

char a = ’Q’, b = ’Q’;
boolean ¢, d, e, f, g, h;

c = a == b; // c == true
d =a !=b; // d == false
e = a < b; // e == false
f =a>hb; // £ == false
g = a <= b; // g == true
h =a > b; // h == true

D McGill

24

Data conversion

e Sometimes it is useful to look at data as if they were from a different type

e For example:

— Adding an integer and a double
— Obtaining the ASCII code of a character

e Forms of data conversion:

— Implicit:
x Assignment conversion
x Promotion

— Explicit: Casting

D McGill

25

Primitive Data Types

General category | Type Description Exat
int Integers 0,1
long Long integers 05.
Numeric short Short integers 2 -
byte Bytes 25.
float Rationals 1.-
double Rationals 1.6
char Single characters X
Text . y
String Sequences of characters at
Logic boolean Truth values true

D McGill

26

Data conversion

e Assignment conversion: A value of one type is assigned
to a variable of a different type, as long as the types are
compatible

int n = 7;

double d = n;

long k = n;

int m = d; // Wrong: compile-time error

e Promotion: an expression ‘promotes’ the types of its
operands to its “largest” type

int m = 8;
float x = 3.0f, vy;
y = x + m;

D McGill

27

Data conversion

e Casting expressions (not a statement)
(type) expression
e Examples:

int n = 3;
double p;
p = (double)n + 4.0;

int a = 3, b = 8;

float c, d;

c = b/a;

d = (float)b/a;

System.out.println(c); // 2.0
System.out.println(d); // 2.666666. ..

D McGill

28

Data conversion

double r = 2.41;
int a;

a

r; // Error

D McGill

29

double r =
int a;
a = (int)r;

Data conversion

2.41;

//0K: Narrowing casting

D McGill

30

Data conversion

e There are two types of casting:

— Narrowing conversions: from a type which requires
more memory to a type that requires less

— Widening conversions: from a type which requires
less memory to a type which requires more

e |f expression has type t, and t requires more memory
than type s, then (s)expression is a narrowing
conversion (e.g. int to byte, double to float,
float to int, ...)

e |f expression has type t, and t requires less memory
than type s, then (s)expression is a widening
conversion (e.g. byte to double, long to int, ...)

D McGill

31

Data conversion

e Widening conversions are safe: no loss of information

e Narrowing conversions are not safe: possible loss of
information

float x = 2.71%;
int i = (int)x;

/) i ==

int k = 130;

byte b = (byte)k;
// b = -126

D McGill

32

Data conversion

v/é
byte values

129 108 127
128 = -128 byte b
129 = -127 int i
256 = 0 k is any integer

257 =1

b+k28=h
i+k232=]

D McGill

33

Statements

e Variable declaration

type variable;

e Assignment

variable = expression,

e Conditionals
if (cond) { statements; 7}
and

if (cond) { stmtsl; } else { stmts2; }

D McGill

34

e Loops

e Method invocation (aka method call)
objectreference .methodname (parameters) ;
or

classname .methodname (parameters) ;

D McGill

35

e The role of statements

Statements

Statement Role
Assignment to change the value of a variable
Conditionals to make decisions

to send a message to an object,
Method calls 5 J

to ask an object to perform an action

Static method calls

to execute a procedure

Loops

to repeat some action(s) several times

D McGill

36

Loops

e The loop is a statement used to describe a task which

IS repetitive

e For example:

System.out
System.out
System.out
System.out
System.out
System.out
System.out

//. ..

print the first 100 odd integers

.println(1);
.println(3);
.println(5);
.println(7);
.println(9);
.println(11);
.println(13);

e What if we want to print the first 1000 odd numbers?

e \What if the user is supposed to give the program the
number of odd numbers?

D McGill

37

Loops

e The basic loop statement:

while (boolean_expression) {
list_of_statements;

}

e Semantics: the execution of a while loop proceeds as
follows:

1. The boolean expression is evaluated

(a) If it is false,
I. the loop stops
ii. and computation proceeds directly after the loop
(b) If it is true,
I. the list of statements is executed,
ii. and when finished, the whole process is repeated
from step 1

D McGill

38

A;

while (C) A
B;

}

D

e Control flow diagram:

false

Loops

A

true

D McGill

39

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 100) A
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘“Done”’) ;

D McGill

40

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘“Done”’) ;

counter | number

(This table shows the values of the variables just before
the statement in red is executed)

Printed:

D McGill .

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) A
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number
1 _

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) A
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

1 1

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘“Done”’) ;

counter | number

1 1

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

by

System.out.println(‘Done”’) ;

counter | number

1 1

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

1 3

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) A
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

2 3

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘“Done”’) ;

counter | number

2 3

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

by

System.out.println(‘Done”’) ;

counter | number

2 3

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

2 5

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) A
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

3 5

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘“Done”’) ;

counter | number

3 5

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

by

System.out.println(‘Done”’) ;

counter | number

3 5

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number

3 I

Printed:

D McGill

Loops

int counter, number;

counter = 1;

number = 1;

while (counter <= 3) A
System.out.println(number) ;

number = number + 2;
counter++;

}

System.out.println(‘Done”’) ;

counter | number
4 7

Printed:

D McGill

Loops

1int counter, number;

counter = 1;

number = 1;

while (counter <= 3) {
System.out.println(number) ;
number = number + 2;

counter++;

¥

System.out.println(‘Done”’) ;

counter | number

4 7

Printed:

1
3
5
Done

D McGill

Loops

int counter = 1;

int number = 1;

while (counter <= 10000) {
System.out.println(number) ;
number = number + 2;
counter++;

by

System.out.println(‘“Done”’) ;

D McGill

Loops

e while is not the same as if

int maximum = scanner.nextInt();

int counter = 1;

int number = 1;

while (counter <= maximum) A
System.out.println(number) ;
number = number + 2;
counter++;

D McGill

Loops

e while is not the same as if

int maximum = scanner.nextInt();

int counter = 1;

int number = 1;

if (counter <= maximum) A
System.out.println(number) ;
number = number + 2;
counter++;

e [he while statement executes a statement or list of
statements repeteadely, until its condition becomes false

e The if statement executes a statement or list of
statements once, and only if its condition is true

D McGill

59

Loops

e A loop may not terminate

int maximum = scanner.nextInt();

int counter = 1;

int number = 1;

while (counter <= maximum) A
System.out.println(number) ;
number = number + 2;

e A loop will not terminate if its condition is always true

e The condition of a loop will remain true if its variables
never change

D McGill

60

Loops

e The variables of the condition must change in a way
which eventually makes the condition false

e |f the variables change, but in a way that does not make
the condition false eventually, then the loop does not
terminate

int maximum = scanner.nextInt();

int counter = 1;

int number = 1;

while (counter <= maximum) A
System.out.println(number) ;
number = number + 2;
counter--;

D McGill

61

e Will this terminate?

int 1;

1 =1;

while (i !'= 10) {
//. ..

1 =1+ 2;

Loops

D McGill

62

e Will this terminate?

int 1;

1 = 100;

while (i '= 0) {
//...
i=1/2;

+

Loops

D McGill

63

e Will this terminate?

int 1;

1= 10;

while (i '= 3) {
//...
i=1/2;

+

Loops

D McGill

64

e Will this terminate?

double 1;

1= 10;

while (i '= 0) {
//. ..
i=1/2;

Loops

D McGill

65

Loops

e [ermination is important

D McGill

66

The end

D McGill

67

