| ‘Statements
e \ariable declaration

type variable;

e Assignment
variable = expression,

e Conditional
if (condition) { stmts; }
or

if (condition) { stmtsl; } else { stmts2; }

e Loop
while (condition) { stmts; }

e Method invocation
objectreference .methodname (parameters) ;

or
classname .methodname (parameters)

D McGill

Object-Oriented Programming

e Java is an object-oriented programming language
e The fundamental notion is that of an object

e Objects represent entities of a problem (possibly real-
world entities)

e A program defines objects that interact with each other

D McGill

Objects

e An object is a composite and reactive piece of data

— A piece of data: an object is data, it can be treated
as a unit, a single piece of data
— Composite: an object is a group of data
— Reactive:
% an object can react to messages sent to it
* we can ask an object to perform a task
* we can apply operations on an object

D McGill

Objects

e A bank account has: (data)

— owner
— balance

e Given a bank account we can: (operations/behaviour)

— deposit
— withdraw

D McGill

Objects

accountl | account2
4) 4
owner Jean owner
balance |$800.00 balance
\ J \

Amy

$850.0

D McGill

Objects and data-types

e All values have a data-type, e.g.:

— The type of 1729 is int
— The type of -1.618 is double
— The type of false is boolean

e Objects are values

e Therefore, all objects have a data type

D McGill

Objects and Classes

e The type of an object is a class

e A class describes:

— the structure of its objects (attributes)
— and its operations (methods)

e A class is not the same as an object
e A class is like the “blueprint” of a family of objects

e An object is a particular instance of a class

D McGill

Classes

e (Classes have a dual role in Java:

— They are the data-type of objects
— They are modules

e A single class alone doesn't do anything ...

— A class is useful in a context of other classes

D McGill

Program structure

e A java program is made of classes

e (Classes are made of

— attributes (variable declarations,) and
— methods

e Methods are made of statements

D McGill

Class definition

public class Name

{
// Attribute definitions
/] ...
// Method definitions
/] ...
+

D McGill

10

Program structure

// File: A.java
public class A
{

/] ...
¥

// File: B.java
public class B
{

/] ...
¥

// File: C.java
public class C
{

/] ...
¥

D McGill

Program structure

public class A
{

int x;

void £()
{

/] ...
}

void g()

/] ...

D McGill

12

Program structure

public class A
{

int x;

void £()
{

/] ...
}

void g()

/] ...

D McGill

13

Program structure

public class A
{

int x;

void £()
{

/] ...
}

void g()

/] ...

D McGill

14

Program structure

public class A
{

int x;

void f£()
{
X++;

}

void g()
{
System.out.println(x);
X--;
}
¥

B McGill

15

Program structure

public class A
{

int x;

X++;
void f()
{

X++;

}

void g()
{
System.out.println(x);
x--;
}
¥

B McGill

16

Program structure

// File: A.java
public class A
{

/] ...
¥

// File: B.java
public class B
{

/] ...
¥

// File: C.java
public class C
{
public static void main(Stringl] args)
{
//. ..
¥
b

D McGill

Objects and Classes

e To be able to use objects we need:

— Define some class or classes
— A mechanism to create objects of a defined class
— A mechanism to apply operations to these objects

D McGill

18

Objects and Classes

e Defining a class:

public class BankAccount
{

String owner;

double balance;

void withdraw(double amount)

{
/] ...
¥

void deposit(double amount)

{
/] ...
¥

D McGill

19

Objects and Classes

e Declaring a variable:
type identifier,

e |t is the same for primitive types

Jdnt, age ;
type ident

as for non-primitive types (classes)

BankAccount, accountl;

type identifier

D McGill

Objects and Classes

e Declaring a variable does not create any objects

e To create objects we use the new operator
accountl = new BankAccount();

e To apply operations to objects we use the dot operator:
accountl.deposit (200.00) ;

e You cannot apply methods without first creating objects

D McGill

21

Classes and Objects

e To create objects we use the new operator

objectvariable = new ClassName (parameters) ;

e To apply operations to objects we use the dot operator:

objectvariable .method (parameters) ;

D McGill

22

Objects and Classes

@ccglrmt;

object

withdraw (150.00);
' H/_/

method parameters

e Applying a method to an object affects only the object

it is being applied to.

accountl | account2 I
() (
owner Jean owner Amy
balance |$650.00 balance | $850.0
\. J .

D McGill

23

Objects and Classes

e Defining a class:

public class BankAccount
{

String owner;

double balance;

void withdraw(double amount)

{
/] ...
¥

void deposit(double amount)

{
/] ...
¥

D McGill

24

Objects and classes

e A single class alone doesn't do anything ...

e A class is useful in a context of other classes

D McGill

25

Objects and Classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accountl;
accountl = new BankAccount();
accountl.deposit(200.0);
¥
¥

e Note: only one class in a program has a main method

D McGill

26

Objects and Classes

public class Test

{

public static void main(Stringl[] args)

{
BankAccount accountl;
accountl = new BankAccount();
accounti.deposit (200.0) ;
BankAccount account?2;
account? = new BankAccount();
account?.deposit (150.0) ;

D McGill

27

Objects and Classes

public class Test

{

public static void main(String[] args)

{
BankAccount accountl;
BankAccount account?2;
accountl = new BankAccount();
account? = new BankAccount();
accountl.deposit (200.0) ;
account?.deposit (150.0) ;

D McGill

28

Objects and Classes

e Fach object has its own separate identity, its own
individual state

e The state of an object is the current value of its
attributes

e The state of an object can change:

— when we ask the object to do something
— ... therefore, the methods of the object’s class are
responsible for changes to the object’s state

D McGill .

Objects and Classes

e Defining a class:

public class BankAccount

{
String owner;
double balance;
void withdraw(double amount)
{
balance = balance - amount;
ks
void deposit(double amount)
{
balance = balance + amount;
b
+

D McGill

30

Anatomy of methods

e A method is normally written as

void method_name (parameters)

{

}

where parameters is a (possibly empty) list of variable
declarations

typel paraml, type2 param2, ..., typen paramn
and body is a list of statements

e The body of the method is executed only when the
method is invoked

D McGill

31

Anatomy of methods

e If a method can return a result value, it has the syntax

type method_name (parameters)

{

return expression,;

}

where expression is of type type

D McGill

32

Parameters

e Parameters: variables that receive information necessary
to execute a method

e Information flow:

— when a method is invoked,

— the caller passes information to the method in the
form of arguments

— and the method receives that information in its
parameters

D McGill

33

Objects and Classes

e Defining a class:

public class BankAccount

{
String owner;
double balance;
void withdraw(double amount)
{
balance = balance - amount;
ks
void deposit(double amount)
{
balance = balance + amount;
b
+

D McGill

34

Objects and Classes

e Defining a class:

public class BankAccount

{

String owner;
double balance;

void withdraw()
{
double amount;
balance = balance - amount;

void deposit ()
{
double amount;
balance = balance + amount;

D McGill

35

Objects and Classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accountl;
accountl = new BankAccount();
accounti.deposit (200.0) ;
System.out.println(‘“Done”’) ;
¥
¥

D McGill

36

Objects and Classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accountl;
accountl = new BankAccount();
accounti.deposit (200.0) ;
System.out.println(‘“Done”’) ;
¥
¥

D McGill

37

Objects and Classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accountl;
accountl = new BankAccount();
accounti.deposit (200.0) ;
System.out.println(‘“Done”’) ;
¥
¥

D McGill

38

Objects and Classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accounti;
accountl = new BankAccount();
accounti.deposit (200.0) ;
System.out.println(‘“Done”’) ;
¥
¥

D McGill

39

Objects and Classes

accountl

null

D McGill

40

Objects and Classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accountl;
accountl = new BankAccount();
accounti.deposit (200.0) ;
System.out.println(‘“Done”’) ;
¥
¥

D McGill

41

Objects and Classes

accountl \
BankAccount
é)
owner
balance 0.0
. W,

D McGill

Objects and Classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accountl;
accountl = new BankAccount();
accounti.deposit (200.0) ;
System.out.println(‘“Done”’) ;
¥
¥

D McGill

43

Objects and Classes

public class BankAccount

{
String owner;
double balance;
void withdraw(double amount)
{
balance = balance - amount;
+
void deposit(double amount)
{
balance = balance + amount;
ks
b

D McGill

44

Objects and Classes

public class BankAccount

{
String owner;
double balance;
void withdraw(double amount)
{
balance = balance - amount;
+
void deposit(double amount)
{
balance = balance + amount;
¥
b

D McGill

45

Objects and Classes

accountl \
BankAccount
é)
owner
balance 200.0
. W,

D McGill

Objects and Classes

public class BankAccount

{
String owner;
double balance;
void withdraw(double amount)
{
balance = balance - amount;
+
void deposit(double amount)
{
balance = balance + amount;
b
b

D McGill

47

Objects and Classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accountl;
accountl = new BankAccount();
accounti.deposit (200.0) ;
System.out.println(‘“Done”’);
¥
¥

D McGill

48

Objects and Classes

public class Test

{

public static void main(Stringl[] args)
{
BankAccount accountl;
BankAccount account?2;
accountl = new BankAccount();
account2 = new BankAccount();
accountl.deposit (200.0) ;
account?.deposit (150.0) ;
System.out.println(‘“Done”’) ;

D McGill

49

Objects and Classes

public class Test

{

public static void main(Stringl[] args)

{
BankAccount accounti;
BankAccount account?2;
accountl = new BankAccount();
account2 = new BankAccount();
accountl.deposit (200.0) ;
account?.deposit (150.0) ;
System.out.println(‘“Done”’) ;

D McGill

50

Objects and Classes

accountl

null

D McGill

51

Objects and Classes

public class Test

{

public static void main(Stringl[] args)

{
BankAccount accountl;
BankAccount account?2;
accountl = new BankAccount();
account2 = new BankAccount();
accountl.deposit (200.0) ;
account?.deposit (150.0) ;
System.out.println(‘“Done”’) ;

D McGill

52

accountl

Objects and Classes

null

account2

null

D McGill

53

Objects and Classes

public class Test

{

public static void main(Stringl[] args)
{
BankAccount accountl;
BankAccount account?2;
accountl = new BankAccount();
account2 = new BankAccount();
accountl.deposit (200.0) ;
account?.deposit (150.0) ;
System.out.println(‘“Done”’) ;

D McGill

54

accountl

Objects and Classes

\ account2
BankAccount
~\
owner
balance 0.0
W,

null

D McGill

55

Objects and Classes

public class Test

{

public static void main(Stringl[] args)

{
BankAccount accountl;
BankAccount account?2;
accountl = new BankAccount();
account2 = new BankAccount() ;
accountl.deposit (200.0) ;
account?.deposit (150.0) ;
System.out.println(‘“Done”’) ;

D McGill

56

accountl

Objects and Classes

account2
\
BankAccount
N
owner
balance

0.0

\
BankAccount
~\
owner
balance 0.0
W,

D McGill

57

Objects and Classes

public class Test

{

public static void main(Stringl[] args)
{
BankAccount accountl;
BankAccount account?2;
accountl = new BankAccount();
account2 = new BankAccount();
accountl.deposit (200.0) ;
account?.deposit (150.0) ;
System.out.println(‘“Done”’) ;

D McGill

58

Objects and Classes

public class BankAccount

{
String owner;
double balance;
void withdraw(double amount)
{
balance = balance - amount;
+
void deposit(double amount)
{
balance = balance + amount;
ks
b

D McGill

59

Objects and Classes

public class BankAccount

{
String owner;
double balance;
void withdraw(double amount)
{
balance = balance - amount;
+
void deposit(double amount)
{
balance = balance + amount;
¥
b

D McGill

60

accountl

Objects and Classes

\ account2
BankAccount
~\
owner
balance 200.0
W,

\
BankAccount
~\
owner
balance 0.0
W,

D McGill

61

Objects and Classes

public class BankAccount

{
String owner;
double balance;
void withdraw(double amount)
{
balance = balance - amount;
+
void deposit(double amount)
{
balance = balance + amount;
b
b

D McGill

62

Objects and Classes

public class Test

{

public static void main(Stringl[] args)
{
BankAccount accountl;
BankAccount account?2;
accountl = new BankAccount();
account2 = new BankAccount();
accountl.deposit (200.0) ;
account?.deposit (150.0) ;
System.out.println(‘“Done”’) ;

D McGill

63

Objects and Classes

public class BankAccount

{
String owner;
double balance;
void withdraw(double amount)
{
balance = balance - amount;
+
void deposit(double amount)
{
balance = balance + amount;
ks
b

D McGill

64

Objects and Classes

public class BankAccount

{
String owner;
double balance;
void withdraw(double amount)
{
balance = balance - amount;
+
void deposit(double amount)
{
balance = balance + amount;
¥
b

D McGill

65

accountl

Objects and Classes

\ account2
BankAccount
~\
owner
balance 200.0
W,

\
BankAccount
~\
owner
balance 150.0
W,

D McGill

66

Objects and Classes

public class BankAccount

{
String owner;
double balance;
void withdraw(double amount)
{
balance = balance - amount;
+
void deposit(double amount)
{
balance = balance + amount;
b
b

D McGill

67

Objects and Classes

public class Test

{

public static void main(Stringl[] args)
{
BankAccount accountl;
BankAccount account?2;
accountl = new BankAccount();
account2 = new BankAccount();
accountl.deposit (200.0) ;
account?.deposit (150.0) ;
System.out.println(‘“Done”’);

D McGill

68

Objects and classes

e Rules on using objects:

— Before applying methods to an object, the object has
to exist (it must be created)
— If a method is applied to an object, then:
* the method must be defined in the object’s class
* the number of arguments passed must be the same
as the number of parameters expected
* the types of arguments passed must match the
types of the parameters, in the same order

D McGill

69

Objects and classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accountl;
accountl.deposit(200.0);
System.out.println(‘Done”’) ;
¥
b

D McGill

70

Objects and classes

public class Test

{
public static void main(Stringl] args)
{
BankAccount accountl;
accountl.deposit(200.0); // ERROR!
System.out.println(‘Done”’) ;
¥
b

e Before applying methods to an object, the object has to
exist (it must be created)

D McGill

71

Objects and classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accountl;
accountl = new BankAccount();
accountl.payInterest(200.0);
System.out.println(‘“Done”’) ;
b
b

D McGill

72

Objects and classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accountl;
accountl = new BankAccount();
accountl.paylnterest(200.0); // ERROR
System.out.println(‘“Done”’) ;
b
b

e If a method is applied to an object, it must be defined
in the object’s class

D McGill

73

Objects and classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accountl;
accountl = new BankAccount();
accountl.deposit();
System.out.println(‘“Done”’) ;
¥
¥

D McGill

74

Objects and classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accountl;
accountl = new BankAccount();
accountl.deposit(); // ERROR
System.out.println(‘“Done”’) ;
¥
¥

e If a method is applied to an object, it must have the
same number of arguments as the number of expected
parameters

D McGill

75

Objects and classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accountl;
accountl = new BankAccount();
accountl.deposit (true);
System.out.println(‘“Done”’) ;
¥
¥

D McGill

76

Objects and classes

public class Test

{
public static void main(Stringl[] args)
{
BankAccount accountl;
accountl = new BankAccount();
accountl.deposit(true); // ERROR
System.out.println(‘“Done”’) ;
¥
¥

e If a method is applied to an object, the types of the
arguments must match the types of the parameters, in
the right order

D McGill

7

Direct access

e Normally we interact with an object through it's class’ methods. .

e so methods are responsible for updating an object’s state (if necessary) by
modifying its attributes

e ... but we can access the object’s attributes directly (although it is not a good
idea,) with the syntax:

objectreference .attribute

as long as attribute is defined in the object’s class

D McGill)

Direct access

public class Test

{
public static void main(Stringl] args)
{
BankAccount accountl;
accountl = new BankAccount();
accountl.owner = ‘““‘Albert’’;
accountl.deposit (200.0);
System.out.print (‘“’+accountl.owner) ;
System.out.println(‘‘ has ’*+accountl.balance);
¥
b

D McGill

79

Direct access

public class Test

{
public static void main(Stringl] args)
{
BankAccount accountl;
accountl = new BankAccount();
accountl.owner = ““Albert’’;
accountl.deposit (200.0);
System.out.print (‘““’+accountl.owner) ;
System.out.println(‘‘ has ’*+accountl.balance);
¥
b

D McGill

80

Constructors

e The constructor of a class is a special method which is
executed when a new instance of the class is created

e |t has a special syntax

ClassName (parameters)

{

e that is its name is the same as the class name, and
e it has no return type

e It is used to initialize the state of the object being
created

D McGill

81

Constructors

public class BankAccount

{

String owner;
double balance;

BankAccount ()
{

owner = ‘““No one’’;
balance = 0.0;

void withdraw(double amount)

{

balance = balance - amount;

void deposit(double amount)

{

balance = balance + amount;

D McGill

82

Constructors

public class Test

{
public static void main(String[] args)
{
BankAccount accountl;
accountl = new BankAccount();
accountl.deposit (200.0);
System.out.print (‘““Done’’) ;
¥
b

B McGill

83

Constructors

public class Test

{
public static void main(String[] args)
{
BankAccount accountl;
accountl = new BankAccount (‘‘Jane’’, 100.0);
accountl.deposit (200.0);
System.out.print (‘“Done’’) ;
¥
b

D McGill

84

Constructors

public class BankAccount

{
String owner;
double balance;
BankAccount (String who, double qty)
{
owner = who;
balance = qty;
¥
void withdraw(double amount)
{
balance = balance - amount;
ks
void deposit(double amount)
{
balance = balance + amount;
b
+

D McGill

85

The end

D McGill

86

