Array operations

e Adding elements

e Removing/deleting elements
e Finding elements

e Increasing the size of an array

e Sorting

D McGill

Sorting

e To sort an array of objects we need:

— each object to have a key
— a way to compare keys

D McGill

Insertion sort

e Notation (not Javal): ali..j] is the part of the array
from the i-th index to the j-th index.

e |dea: sorting a set of cards can be done by inserting a
card in the subset of the cards which are already sorted.

012 j

Kk

)

- J
Y

already sorted

D McGill 3

Insertion sort

e Notation (not Javal): ali..j] is the part of the array
from the i-th index to the j-th index.

e |dea: sorting a set of cards can be done by inserting a
card in the subset of the cards which are already sorted.

012 j
alb k

)

G) key | k
~

already sorted

a<=k<b

D McGill 4

Insertion sort

e Notation (not Javal): ali..j] is the part of the array
from the i-th index to the j-th index.

e |dea: sorting a set of cards can be done by inserting a
card in the subset of the cards which are already sorted.

0 12 J
alk |b
)
~_/
_) key | k
V

already sorted

D McGill 5

Insertion sort

e Notation (not Javal): ali..j] is the part of the array
from the i-th index to the j-th index.

e |dea: sorting a set of cards can be done by inserting a
card in the subset of the cards which are already sorted.

012 Jj+l
akb P

\§),
Y

already sorted

D McGill 6

Insertion sort

e Algorithm refined:

1. For each j from 1 to the length of a-1

(a) Insert a[j] into the sorted subarray a[0..j-1]

D McGill

Insertion sort

void insertion_sort()
{
int 1, j;
String key;
Book focus;
j=1;
while (j < book_list.length)
{
focus = book_list[j];
key = focus.title();
i=3 - 1;
while (i >= 0 &&
key.compareTo(book_list[i].title()) < 0)
{
book_list[i+1] = book_list[i];
1--;
+
book_list[i+1] = focus;
jtt;
}
}

D McGill

Selection sort

0 12 | [
k m
/]\ m is the min of
the unsorted part
already sorted unsorted

D McGill

Selection sort

012 J |
m k
N\ N J
2\ V
already sorted unsorted

D McGill

10

Selection sort

012 jj+1
m| h
Y Y
already sorted unsorted

D McGill

11

Selection sort

e Algorithm

1. For each j from 0 to length a - 2 do

(a) Let min_index to be the index of the minimum in
alj+1..length a-1]
(b) Swap a[min_index] and a[j]

D McGill

12

Selection sort
void selection_sort() {
int min_index, j = 0, 1;
String minimum;
Book temp;
while (j <= a.length - 2) {
minimum = book_list[j].title();
min_index = j;
1=7]+1;
while (i <= book_list.length - 1) {
String current_key = book_list[i].title();
if (current_key.compareTo(minimum) < 0) {
minimum = current_key;
min_index = 1;
b
1++;
by
temp = book_list[j];
book_list[j] = book_list[min_index];
book_list[min_index] = temp;
Jj+t;
+
by

B McGill y

Binary search

But if we know that the array is sorted, we can improve

the speed of searching by ignoring parts which do not

need to look at.

If we are looking for a value v in an array a, and we have

already narrowed down the search space to al[l..h],

then

value \Y

i h

l

i =1+ (h-1)/2

T if v=k

if v<k

if v>k

then V isin ai]

then v isin]
then v isin [

D McGill

14

| | Binary search
int binary_search(String title)

{
int lower = 0, higher = book_list.length - 1;
int 1ndex;
String current_title;
int comparison;
while (lower <= higher) {
index = lower + (higher - lower) / 2;
current_title = book_list[index] .title();
comparison = title.compareTo(current_title);
if (comparison == 0) {
return index;
by
else if (comparison < 0) {
higher = index - 1;
by
else { // comparison > 0
lower = index + 1;
b
b
return -1; // Not found

¥

D McGill

15

Array operations

class Library

{

private Book[] book_list;
private int next_available;
private boolean sorted,;

public Library(int max_capacity) { ... }
public int number_of_books() { ... } // Accessor
public void add_book(Book m) { ... } // Mutator
private void grow_array(int n) { ... } // Mutato
public int book_index(String title) { ... } // A
public Book find_book(String title) { ... } // A
public void delete_book(String title) { ... } //
public void sort() { ... } // Mutator
public int linear_search(String title) { ... } /
public int binary_search(String title) { ... } /
} // End of Library

D McGill

16

Array operations

public void sort()

{

if (!sorted)

{

}

sorted = true;
+

D McGill

17

Array operations

public int book_index(String title)

{
if (sorted)

{

return binary_search(title);

}

return linear_search(title);

¥

B McGill .

Array operations

public int linear_search(String title)
{
int 1;
1 = 0;
while (i < book_list.length)
{
Book m = book_list[i];
if (m != null)

{
String s = m.title();
if (s.equals(title))
{
return 1;
by
by
i++;
by
return -1;

}

D McGill

19

Array operations

e Sorting takes too much time

e Alternative design:

— Whenever we add a book, preserve the ordering
— Whenever we delete a book, preserve the ordering

e Possible solution: sort every time we add or delete (bad

idea.)

D McGill y

Array operations

public void add_book(Book m)

{
if (next_available >= book_list.length)

{
int 1 = book_list.length;
grow_array((int)(1 * 0.10) + 10);
}
Book focus = book_list[next_available];
String key = focus.title();
int 1 = next_available - 1;
while (i >= 0 &&
key.compareTo(book_list[i].title()) < 0)
{
book_list[i+1] = book_list[i];
1--;
}
book_list[i+1] = focus;
next_avallable++;

}

D McGill

21

Array operations

public void delete_book(String title)

{
int 1 = book_index(title);

if (1 = -1)
{
book_list[i] = null;
int j = 1;
while (j <= next_available - 2)
{

book_1list[j] = book_list[j+1];
by

book_list[next_available - 1] = null;
next_availlable--;

D McGill

22

Multidimensional arrays

o 1 2 n
0 4

1 —
5 \\012 n
\O 1 2 n
o 1 2 n

m —

O 1 2 n

0

1

2

m

D McGill

23

Multidimensional arrays

e A two-dimensional array is an array of arrays.

int[J[] table = new int[5][10];

for (int row=0; row < table.length; row++)
for (int col=0; col < tablel[row].length; col++)
table[row] [col] = row * 10 + col;

e A multidimensional array is an n-dimensional array, i.e.
an array of arrays of arrays of ...

e Processing nested arrays is commonly done with nested
loops.

D McGill

24

Efficiency

e Linear search: O(n)

n # of comparisons
1 1
2 2
3 3
4 4
1000 1000
10000000 10000000
k k

D McGill

25

Efficiency

e Binary search: O(logan)

n # of comparisons
1 0
2 2
3 3
10 4
100 7
1000 10
10000 14
100000 17
1000000 20
10000000 24
100000000 27
10° 30
1010 33

D McGill

26

10

Efficiency

absEx}
lagf
5 [i a 9

10

D McGill

27

Efficiency

100 T
abs(x)
logix)
a0
B0 P
ki) (=10 Fie] an = 0] 100

D McGill

Efficiency

1200 T T T T T T T T T

abs{x)

logix)
1000
200
g0 |
400
200 |

] L I I I - g _= —j = =

0 100 200) 200 400 50 B o0 20 300 1000

D McGill

Sorting algorithms

e Insertion sort
e Selection sort
e Bubble sort
e Heap sort

e Merge sort

e Quick sort

e Bucket sort
e Counting sort
e Radix sort

e Sorting networks

D McGill

30

Sorting algorithms

Algorithm Complexity n = 1000 n = 10°
Insertion sort O(n?) 10° 1012
Selection sort O(n?) 10° 1012
Bubble sort O(n?) 10° 1012
Heap sort O(nlog,n) ~ 10000 | ~ 20 x 10’
Merge sort O(nlogyn) ~ 10000 | ~ 20 x 107
. O(n?) in the worst case,
Quick sort bu€c O)(n log, n) on average
Bucket sort O(n) but with restrictions 1000 10°
Counting sort O(n) but with restrictions 1000 10°
Radix sort O(n) but with restrictions 1000 10°
Sorting networks | O(n) but with restrictions 1000 10°

D McGill

31

100

a0

B0 F

40 b

an

Efficiency

absfx}
w¥
x*loglx)

10

D McGill

32

Efficiency

10000 T T T T T T T T

abslx) o
w¥ _
x*loglx)
aoon
Goog
4000 | .
2000 F
i i — i
10 20 a0 40 B B Fie] g0 90 100

D McGill

1,2e+08

le+0E F

200000

E0OO00

400000

200000

Efficiency

abs{xﬁ
w¥
x*loglx)

100

200

200

400

500

Go0

700

200

00

1000

D McGill

34

Object Oriented Programming

e The execution of an OO program consists of

— Creation of objects
— Interaction between objects (message-passing)

e Defining features of an OO language:

— Class definitions (describing the types of objects and
their structure,)

— Object instantiation (creation,)

— Message-passing (invoking methods,)

— Aggregation (object structure, has-a relationships)

— Encapsulation (objects as abstract units, hiding,)

— Inheritance,

— Polymorphism

D McGill

35

Inheritance

e A class represents a set of objects which share the same
structure (attributes) and capabilities (methods)

e Sometimes it is useful to identify specific subsets within
a set (e.g. the set of savings accounts is a subset of the
set of bank accounts, the set of art students is a subset
of the set of students, the set of dogs is a subset of the
set of animals. etc.)

e The elements of a subset A of a set B are more
specialized than those of B. This is, they may have
additional characteristics and capabilities.

D McGill

36

Inheritance

e Inheritance is the mechanism that allows us to describe
this specialization relationship between classes.

class B{ ... }
class A extends B { ... }

e A s a subclass of B, or equivalently, A is derived from
B, Ais a child of B, or B is a superclass of A, or B
is a parent of A.

e Means that the set of A objects is a subset of the set
of B objects.

class Labrador extends Dog { ... }

e Inheritance represents the “is-a" relationship

D McGill

37

f

A

represents:
"every A is a B"
(inheritance)

For example:

Dog

i

Inheritance

Dog

<>————Tall

Labrador

represents:
"every A has a B"
(aggregation)

D McGill

38

Inheritance

e A class is like a blueprint
e Objects are particular instances of that blueprint

e A subclass A of a class B is an extension to the original
blueprint of B

e A subclass adds additional features (attributes and
methods)

e \We say that the subclass inherits all of its parent's
attributes and methods

e An instance of the subclass has the attributes and
methods of the parent in addition to the subclass’s own
attributes and methods.

D McGill

39

Inheritance

class C{ ... }
class B
{
C v;
/] ...
+
class A extends B
{
// Has an implicit C v;
/] ...
+

D McGill

40

Inheritance

class Engine {

/] ...
¥

class Car {
Engine engine;
/] ...

T

class RacingCar extends Car {
// It implicitly has Engine e;
/] ...

¥

// In some client
RacingCar r = new RacingCar();
Engine el = r.engine; // engine is inherited from

D McGill

41

Inheritance

Car <> £ Engine

RacingCar

is the same as

Car (< s Engine

RacingCar (<>

D McGill

Inheritance

e Inheritance also represents specialization

class Engine {

/] ...
¥

class Car {
Engine engine;
Car() { engine = new Engine(); }
/] ...

by

class RacingCar extends Car {
Aerofoill aero;
TurboCharger turbo;

¥

// In some client

RacingCar r = new RacingCar();

Engine el = r.engine; // e is inherited from Car
TurboCharger tl1 = r.turbo;

Car ¢ = new Car();

Engine e2 = c.engine;

TurboCharger t2 = c.turbo; // Error

D McGill

43

Inheritance

e Inheritance serves as a tool for reusability:

e \We can write

class RacingCar extends Car {
Aerofoil aero;
TurboCharger turbo;

¥

instead of

class RacingCar {
Engine engine;
Aerofoil aero;
TurboCharger turbo;

¥

D McGill

44

Inheritance

e Methods are inherited too:

class Engine {
void start() { ... }
b
class Car {
Engine engine;
double speed;
Car() { engine = new Engine(); speed = 0.0; }
void turn_on()
{
engine.start();
b
¥

class RacingCar extends Car {
Aerofoil aero;
TurboCharger turbo;

¥

RacingCar r = new RacingCar();
r.turn_on(); // Inherited from Car

D McGill

45

Inheritance

e Classes can have many subclasses

class Sedan extends Car {
Trunk t;
PassengerSeats[] ps;

¥

Sedan s = new Sedan();
s.turn_on() ;

Car

RacingCar Sedan

D McGill

Inheritance

e Attributes in a class are shared between its subclasses
(but not the values of those attributes!)

Car

RacingCar

Sedan

)

TurboCharger

Aerofoll

Engine

Trunk

D McGill

47

Inheritance

e |nheritance is a transitive relation: if every A is a B and
every B is a C, then every Aisa C

class F1Car extends RacingCar {
SpeedControlSystem scs;

¥

e instead of

class FiCar {
Engine engine;
Aerofoil aero;
TurboCharger turbo;
SpeedControlSystem scs;

D McGill

48

Inheritance

e Class hierarchy:

Car

RacingCar

JA)

Engine

Sedan

F1Car

Cart

Nascar

D McGill

49

Inheritance

e A closer look at inheritance as specialization

class Animal {

boolean tired, hungry;

void eat()

{
get_food () ;
hungry = false;

¥

void get_food() { ... }

void sleep()

{
System.out.println(‘“‘zzz...”’);
tired = false;

¥

¥

D McGill

50

Inheritance

class Dog extends Animal {
Legs[] 1;
Talil t;
void run()
{
tired = true;
hungry = true;
¥
void bark()

1
System.out.println(‘“Woof, Woof!’’);
}
}

class Labrador extends Dog {
void say_hello()
{
t.wiggle();
}
¥

D McGill

51

Inheritance

public class ZooTest {
public static void main(String[] args)
{
Labrador 1 = new Labrador();
1.say_hello(Q);
1.run();
if (1.hungry)
1l.eat();
if (1.tired)
1.sleep();

D McGill

52

Inheritance

e Inheritance represents also a spectrum of possibilities or
alternatives, given by the subclasses of a class

e If every Bisan A and every Cis an A, and nothing else
is an A, then an A is eithera Bora C

— (e.g. if every racing car is a car, and every sedan is a
car, and nothing else is a car, then a car is either a
racing car or a sedan.)

class Animal { ... }

class Dog extends Animal { ... }
class Cat extends Animal { ... }
class Bird extends Animal { ... }

Animal al = new Dog();

Animal a2 = new Cat();

Animal a3 = new Bird();

Dog d = new Animal(); // Wrong!

D McGill

53

Inheritance

e (lasses as sets of objects:

— "is-a’ between an object and a class is the same as €
— “is-a" between two classes is the same as C

o Llet A B, C be sets

— fAC Bandxz € Athenx € B

— fACBand BC(Cthen ACB

— If BC A and C C A, and there is no other set D
such that D C Athen A= BUC

D McGill 3

Inheritance

e A bank account is either a savings account or a checking
account, then a savings account is a kind of bank
account, and a checking account is a kind of bank
account.

BankAccount
+balance: float

+deposit(amount:float): void
+withdraw(amount:float): void
+balance(): float

SavingsAccount CheckingAccount
+interest_rate: float +fee: float
+apply_interest(): void +deduct_fees(): void

D McGill

55

Inheritance

class BankAccount {
private float balance;
public BankAccount(float initial_balance)

{

balance = 1nitial_balance;

+
public void deposit(float amount)

{

balance = balance + amount;

}

public void withdraw(float amount)

{

balance = balance - amount;

}

public float balance() { return balance; }

D McGill

56

Inheritance

class SavingsAccount extends BankAccount {
private float interest_rate;
public SavingsAccount(float initial_balance,
float rate)
{
super (initial_balance); // Calls superclass
// constructor
interest_rate = rate;

+
public void apply_interest()

{
balance = balance
+ balance * interest_rate/100.0;

D McGill

57

Inheritance

class CheckingAccount extends BankAccount {
private float fee;
public SavingsAccount(float initial_balance,
float fee)
{
super (initial_balance) ;
this.fee fee;

+
public void deduct_fee()

{

balance = balance - fee;

D McGill

58

Overriding methods

BankAccount

+balance: float

+deposit(amount:float): void
+withdraw(amount:float): void
+balance(): float

SavingsAccount CheckingAccount
+interest_rate: float +fee: float
+apply_interest(): void +deduct_fees(): void

LimitedSavingsAccount
+daily_limit: float
+withdraw(amount:float): void

D McGill

59

Overriding methods

class LimitedSavingsAccount
extends SavingsAccount {
private float daily_limit;
public LimitedAccount(float initial_balance,
float rate, float limit)
{
super (initial_balance, rate);
daily_limit = limit;

+
public void withdraw(float amount)
{
if (amount < daily_limit)
balance = balance - amount;
+

D McGill

60

Overriding methods

public class BankApplication {

public static void main(String[] args)

{
LimitedSavingsAccount al;
CheckingAccount a2;
al = new LimitedSavingsAccount(1000.0, 0.2, 20
a2 = new CheckingAccount(300.0, 3.50);
al.withdraw(400.0) ;
al.apply_interest();
al.deposit (200.0);
a2.deduct_fee();
a2.withdraw(400.0) ;

D McGill

61

Inheritance

class C{ ... }
class D { ...
class E{ ... }
class B {

C vl, v2;

D u;

void m() { ... %}
}
class A extends B {

E x;

Cy;

void p() { ... }

void s(O) { ... }
}

-

D McGill

62

Inheritance

A obj = new AQ);
obj.pO);
obj.m();

sone frane

Obj e

D McGill

63

Inheritance

e A method in a subclass can access the attributes and
methods of its super class.

class C{ ... %}
class D { ... }
class E{ ... }
class B {
Cvl, v2;
D u;
voidm() { ... vl ... v2 ... u ... m(Q)
+
class A extends B {
E x;
Cy;
void p()
{
X ooy oo pO oLaovD oL
.. v2 ...u ... mQ
}
void s() { ... %
}

D McGill

64

Inheritance

class M extends A {
E z;
D r;
void qO) { ... }
}

M obj2 = new MQ);

sone frane

obj N

D McGill

65

Shadowing variables

e An attribute or instance variable can be redefined in a
subclass. In this case we say that the variable in the
subclass shadows the variable in the parent class.

class M extends A {

E z;
D r, x;
void q() { ... }
t
sone frane
M
Obj — 4)
vl
v2 B
u
X A
y
Z
r M
X
_ J

D McGill

66

Accessing variables from the super
class

e The super reference is used to access an attribute or
method in a parent class.

class M extends A {
E z;
D r, x;
void q()
{

. this.x ... super.x ...

D McGill

67

Overriding methods

e A method can be redefined in a subclass. This is called
overriding the method.

class M extends A {
E z;
D r, x;
void q()
{

... this.x ... super.x ...
¥
void p()
{

}

D McGill

68

Inheritance

e A method in a subclass can access the attributes and
methods of its super class.

class C{ ... %}
class D { ... }
class E{ ... }
class B {
Cvl, v2;
D u;
voidm() { ... vl ... v2 ... u ... m(Q)
+
class A extends B {
E x;
Cy;
void p()
{
X ooy oo pO oLaovD oL
.. v2 ...u ... mQ
}
void s() { ... %
}

D McGill

69

Accessing a method or attribute

e When we try to access a method or attribute of an
object, it is looked up by the Java runtime system in
the class of the object first. If it is not found there, it is
looked up in the parent class. If it is not found there, it
is looked up in the grand-parent, etc...

M obj3 = new MQ);
0bj3.q0);
obj3.m();
0bj3.p0);
0bj3.s80);

e Attributes and methods declared as private cannot be
accessed directly by the subclasses, even though they
are present in the object. They can be accessed only
indirectly by public accessor methods in the class that
declared them as private.

D McGill

70

Accessing a method or attribute

class A extends B {
private E x, y;

super.get_x ()

void p() { }

void s() { }

public E get_x() { return x; }
+
class M extends A {

E z;

D r, x;

void q()

{

. this.x ...
... getx() ... or ...

+

+

D McGill

71

Accessing a method or attribute

e An attribute or method declared as protected can be

accessed by any subclass, even if it is in a different
package.

e An attribute or method declared as final, is not
inherited at all, i.e. it forbids overriding.

e A class declared as final, cannot have subclasses.

D McGill

72

Multiple inheritance

e Multiple inheritance: a class with more than one
superclass

D McGill

73

Multiple inheritance

Animal

Mammal

Fish

+sleep(): void

+sleep(): void

Dolphin

D McGill

74

Multiple inheritance

Animal

Mammal Fish
+sl eep(): void +sl eep(): void
Dolphin
class A extends B, C{ ... } // Error

e Java does not support multiple inheritance

D McGill

75

Multiple inheritance

G

+p()

= F

+p() ZF
B C D
L .

D McGill

76

The end

D McGill

7

