Operational Semantics and Behavioural Equivalence

Ernesto Posse

August 2, 2001

Introduction

simulating systems (models \approx programs). Languages and formalisms for describing, modelling and

• Syntax:

- What are the entities described in the language or formalism.
- How to combine the entities to build composite models of the systems.
- Semantics: The meaning of the programs or models described meaningless symbols and/or diagrams. in the formalism. Without it we only have a bunch of

Semantics

- Motivation for studying semantics
- Guideline for implementing formalisms.
- Reasoning about formalisms and the systems described by
- Types of semantics
- Operational: What is the computation that a program performs, or what is the state trajectory of a system.
- Denotational: What abstract mathematical entity is represented (denoted) by a program or model (e.g. input-output function).
- by translating it to another language or formalism for which Translational: The semantics of a program or model is given we already know the semantics
- Axiomatic: Preconditions and postconditions.

Reasoning about systems

- Deduce properties satisfied by a system, e.g. termination, correctness, complexity, liveness, fairness, etc.
- Applications: verification, optimization, automatic program generation.
- Behavioural Equivalence:
- Practical motivation: verification, optimization, automatic program generation.
- Theoretical motivation: system equivalence is fundamental is incomplete. for semantics. A semantics without a notion of equivalence
- Process/System Algebra
- For black-box approach it is better treated in the context of and interaction, Operational Semantics is better suited. Denotational Semantics, but for studying state-trajectories

Operational Semantics

- Term/Graph Rewritting Systems
- A TRS is a $(\mathcal{A}, \rightarrow)$, where \mathcal{A} is any set, and $\rightarrow \subseteq \mathcal{A} \times \mathcal{A}$ is called a reduction or reaction relation.
- in one time step into s_2 ", or " s_1 is substituted by s_2 " We write $s_1 \to s_2$ instead of $(s_1, s_2) \in \to$ to mean " s_1 evolves
- The operational semantics of a language are given by defining the appropriate \mathcal{A} and \rightarrow .
- from a TRS. In general it is straightforward to generate an interpreter

TRS example: CCS

- Communicating Concurrent Systems (Milner '79)
- Several concurrent *processes* or *agents*, possibly composite.
- Communication by channels: synchronous message passing.
- Syntax
- Nil process: 0
- Send a signal: $\overline{a}.P$
- Receive a signal: a.P
- Parallel composition: $P_1 \mid P_2$
- Restriction (scoping): $\nu x.P$
- Example 1: \overline{a} .0 | a.0
- Example 2: $\overline{a}.b.P_1 \mid \overline{b}.a.P_2$
- Example 3: $\overline{b}.P_1 \mid b.\nu a.(\overline{a}.P_2 \mid a.P_3)$

TRS example: CCS (cont.)

- Let \mathcal{A}_{ccs} be the set of all CCS programs, so the operational semantics of CCS is the TRS (A_{ccs}, \rightarrow) where \rightarrow is defined (inductively) as follows:
- Comm: $\overline{a}.P_1 \mid a.P_2 \rightarrow P_1 \mid P_2$
- Par: if $P_1 \to P_1'$ then $P_1 \mid P_2 \to P_1' \mid P_2$.
- Restr: if $P_1 \to P_1'$ then $\nu x.P_1 \to \nu x.P_1'$.
- Example 1: $\overline{a}.0 \mid a.0 \rightarrow 0 \mid 0$
- Example 2: $\overline{a}.b.P_1 \mid \overline{b}.a.P_2 \not\rightarrow$
- Example 3: $\overline{b}.P_1 \mid b.\nu a.(\overline{a}.P_2 \mid a.P_3) \rightarrow P_1 \mid \nu a.(\overline{a}.P_2 \mid a.P_3) \rightarrow$ $P_1 \mid \nu a.(P_2 \mid P_3) \rightarrow \dots$

Operational Semantics

- Labelled Transition Systems (LTS)
- Finer grained treatment of how the system behaves
- An LTS is a $(\mathcal{A}, \mathcal{L}, \rightarrow)$, where \mathcal{A} and \mathcal{L} are any sets, and $\rightarrow \subseteq \mathcal{A} \times \mathcal{L} \times \mathcal{A}$ is called a transition relation.
- evolves in one time step into s_2 by performing the action α " We write $s_1 \stackrel{\alpha}{\to} s_2$ instead of $(s_1, \alpha, s_2) \in \to$ to mean " s_1 "
- Context sensitive: \mathcal{L} represents context information.
- Closely related to automata: given an LTS $(\mathcal{A}, \mathcal{L}, \rightarrow)$ and a system $s \in \mathcal{A}$ we can obtain a state automata representing s.

LTS example: CCS

Given \mathcal{A}_{ccs} as before, and $\mathcal{L}_{ccs} \stackrel{def}{=} \{\tau\} \cup \bigcup \{x, \overline{x}\}$ for all channel names x, the semantics of CCS is given by the LTS $(\mathcal{A}_{ccs}, \mathcal{L}_{ccs}, \rightarrow)$ where \rightarrow is defined as follows:

- Pref: $\alpha.P \stackrel{\alpha}{\to} P$

Comm: if $P \stackrel{\overline{a}}{\to} P'$ and $Q \stackrel{a}{\to} Q'$ then $P \mid Q \stackrel{\tau}{\to} P' \mid Q'$

- Par: if $P_1 \stackrel{\alpha}{\to} P_1'$ then $P_1 \mid P_2 \stackrel{\alpha}{\to} P_1' \mid P_2$.

Restr: if $P_1 \stackrel{\alpha}{\to} P_1'$ and x is not in α then $\nu x.P_1 \stackrel{\alpha}{\to} \nu x.P_1'$.

Simulation and similarity

- Formalize the notion of "one system/model imitates another system/model"
- Do no separate the world from the formalism domain.
- The "simulating" system must match the actions of the "simulated" system.
- Given an LTS $(A, \mathcal{L}, \rightarrow)$, a binary relation $S \subseteq A \times A$ is called $Q \stackrel{\alpha}{\to} Q'$ for some $Q' \in \mathcal{A}$ and $(P', Q') \in \mathcal{S}$. whenever $P \stackrel{\alpha}{\to} P'$ for some $\alpha \in \mathcal{L}$ and some $P' \in \mathcal{A}$ then a simulation if for any $P, Q \in \mathcal{A}$, $(P, Q) \in \mathcal{S}$ implies that
- We say that P and Q are similar (or that Q simulates P), written $P \leq Q$ if there is a simulation S such that $(P,Q) \in S$.

Simulation example

Machine Q

Machine P

 $Q_1 \preceq P_1$ because

 $S \stackrel{def}{=} \{(Q_1, P_1), (Q_2, P_2), (Q_3, P_2), (Q_4, P_3), (Q_5, P_4)\}$ is a simulation.

...but $P_1 \not\preceq Q_1$

Behavioural equivalence: first attempt

- Two-way simulation: we consider P and Q equivalent if $P \leq Q$
- Is this an equivalence relation? Yes.
- Is it a good behavioural equivalence relation? No. A good behavioural equivalence should differentiate between systems that do not have the same state trajectories

Behavioural equivalence: second attempt

- Two-way simulation fails in capturing the idea that two external world (i.e. it is not a congruence) equivalent systems must interact in the same manner with the
- Given an LTS $(\mathcal{A}, \mathcal{L}, \rightarrow)$, a binary relation $\mathcal{S} \subseteq \mathcal{A} \times \mathcal{A}$ is called any $\alpha \in \mathcal{L}$: a bisimulation if for any $P, Q \in \mathcal{A}$, $(P, Q) \in \mathcal{S}$ implies that for
- Whenever $P \stackrel{\alpha}{\Rightarrow} P'$ then $Q \stackrel{\alpha}{\Rightarrow} Q'$ and $(P', Q') \in S$.
- Whenever $Q \stackrel{\alpha}{\to} Q'$ then $P \stackrel{\alpha}{\to} P'$ and $(P', Q') \in S$.
- Alternative definition: S is a bisimulation if it is a simulation and S^{-1} is also a simulation
- We say that P and Q are bisimilar, written $P \sim Q$ if there is a bisimulation S such that $(P,Q) \in S$.

Congruence relations

- When an equivalence relation is not good enough.
- Given an algebra (or language) with some operators (or system in the formalism (element in the algebra), then $\mathcal{C}[P]$ is combinators), we can define the notion of "context" as a term the system resulting from putting P in place of the hole $[\cdot]$. with a "hole": if $C[\cdot]$ is a context in our formalism and P a
- A congruence relation is an equivalence relation \cong such that possible contexts, i.e. it is preserved by all contexts: for all contexts $C[\cdot]$, $P \cong Q$ implies $C[P] \cong C[Q]$. whenever $P \cong Q$, then P and Q are interchangeable in all
- In CCS, bisimilarity is a congruence.

Final remarks

- A notion of behavioural equivalence should be a congruence
- ...but the notions of simulation and behavioural equivalence can (and sometimes must) be relaxed to be more useful.
- Weak (bi)simulation
- Barbed (bi)simulation
- etc.
- The notion of (bi)simulation depends on the formalism, and sometimes it is not a congruence (yet might be useful). There are specialized notions, e.g. markovian bisimulation
- The notion of bisimulation induces an algebra (set of axioms for equations).
- Bisimulation is decidable, and there are standard algorithms for testing it (but they are also formalism dependant).