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Introduction

e Languages and formalisms for describing, modelling and
simulating systems (models ~ programs).
e Syntax:

— What are the entities described in the language or

formalism.
— How to combine the entities to build composite models of

the systems.

e Semantics: The meaning of the programs or models described
in the formalism. Without it we only have a bunch of

meaningless symbols and/or diagrams.




Semantics

e Motivation for studying semantics
— Guideline for implementing formalisms.
— Reasoning about formalisms and the systems described by
them.
e Types of semantics

— Operational: What is the computation that a program
performs, or what is the state trajectory of a system.

Denotational: What abstract mathematical entity is
represented (denoted) by a program or model (e.g.

input-output function).

Translational: The semantics of a program or model is given
by translating it to another language or formalism for which
we already know the semantics.

Axiomatic: Preconditions and postconditions.




Reasoning about systems

e Deduce properties satisfied by a system, e.g. termination,
correctness, complexity, liveness, fairness, etc.

e Applications: verification, optimization, automatic program
generation.

e Behavioural Equivalence:

— Practical motivation: verification, optimization, automatic
program generation.

Theoretical motivation: system equivalence is fundamental
for semantics. A semantics without a notion of equivalence
is incomplete.

Process/System Algebra

For black-box approach it is better treated in the context of
Denotational Semantics, but for studying state-trajectories
and interaction, Operational Semantics is better suited.




Operational Semantics

e Term/Graph Rewritting Systems

A TRS is a (A, —), where A is any set, and -C A x A is

called a reduction or reaction relation.

We write s; — ss instead of (s1, s2) €— to mean “s; evolves

in one time step into s5”, or “sq is substituted by s5”

The operational semantics of a language are given by
defining the appropriate A and —.

In general it is straightforward to generate an interpreter
from a TRS.



TRS example: CCS

e Communicating Concurrent Systems (Milner ’79)
— Several concurrent processes or agents, possibly composite.

— Communication by channels: synchronous message passing.

e Syntax
Nil process: 0
Send a signal: a.P
Receive a signal: a.P
Parallel composition: P; | Ps

Restriction (scoping): vz.P

e Example 1: @.0 | a.0

o Example 2: @.b.P; | b.a.P,
e Example 3: b.P; | b.va.(a.P; | a.Ps)




TRS example: CCS (cont.)

o Let A..s be the set of all CCS programs, so the operational
semantics of CCS is the TRS (A¢cs, —) where — is defined
(inductively) as follows:

— Comm: a.Py _ a.Py — Py _ Ps
— Par: if wu — wu\ then wu _ ww — wu\ i ww.

— Restr: if Py — P{ then vz.P; — vz.Pj.

e FExample 1: @.0|a.0 - 0|0

e Example 2: @.b.P; | b.a.Py, /

e Example 3: b.P; | bva.(@.Py | a.P3) — Py | va.(a.Py | a.P3) —
ww _ N\Q\.Aww i wwv — ...




Operational Semantics

e Labelled Transition Systems (LTS)

Finer grained treatment of how the system behaves

An LTS is a (A, £,—), where A and L are any sets, and
—C A x L x A is called a transition relation.

We write s; — s instead of (s1,Q, S2) E— to mean “sq

evolves in one time step into sy by performing the action o”.
Context sensitive: L represents context information.

Closely related to automata: given an LTS (A, £, —) and a
system s € A we can obtain a state automata representing s.



LTS example: CCS

e Given A..s as before, and L..s = {r} U J{z,z} for all channel

names x, the semantics of CCS is given by the LTS
(Aces, Lees, —) where — is defined as follows:

Pref: a.P > P
Comm: if P % P’ and Q > Q' then P |Q = P’ | Q'
Par: if P, 5 Pj then P, | P, = P| | P,.

Restr: if P; — P| and z is not in « then vz.P; = vx.P).




Simulation and similarity

e Formalize the notion of “one system/model imitates another

system/model”.
— Do no separate the world from the formalism domain.

— The “simulating” system must match the actions of the

¢

‘simulated” system.

e Given an LTS (A, £,—), a binary relation S C A x A is called
a simulation if for any P,Q € A, (P,()) € S implies that
whenever P = P’ for some a € £ and some P’ € A then

Q = Q' for some Q' € A and (P',Q") € S.

e We say that P and @) are similar (or that Q) simulates P),
written P < @ if there is a simulation S such that (P,Q) € S.




Simulation example

Machine P Machine Q

(21 =< P; because
S 1(Q1,P), (Q2, Py), (@3, Py), (Qa, P3), (Qs, Py)} is a

simulation.

...but ww M @H

d
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Behavioural equivalence: first attempt

e Two-way simulation: we consider P and () equivalent if P < ()
and Q < P.

e Is this an equivalence relation? Yes.

e Is it a good behavioural equivalence relation? No. A good

behavioural equivalence should differentiate between systems
that do not have the same state trajectories.




Are these equivalent?

Machine P Machine Q




Behavioural equivalence: second attempt

e Two-way simulation fails in capturing the idea that two
equivalent systems must interact in the same manner with the

external world (i.e. it is not a congruence)

Given an LTS (A, £,—), a binary relation S C A x A is called
a bisimulation if for any P,Q € A, (P,Q) € S implies that for
any o € L:

— Whenever P = P’ then Q = Q' and (P, Q') € S.
— Whenever Q@ = Q' then P 3 P’ and (P',Q’) € S.

Alternative definition: S is a bisimulation if it is a simulation

and S~ ! is also a simulation.

e We say that P and () are bisimilar, written P ~ () if there is a
bisimulation § such that (P,Q) € S.




Congruence relations
e When an equivalence relation is not good enough.

e Given an algebra (or language) with some operators (or
combinators), we can define the notion of “context” as a term

with a “hole”: if C[-] is a context in our formalism and P a

system in the formalism (element in the algebra), then C[P] is

the system resulting from putting P in place of the hole [-].

A congruence relation is an equivalence relation = such that
whenever P = (), then P and () are interchangeable in all

possible contexts, i.e. it is preserved by all contexts: for all
contexts C|-], P = @ implies C[P] = C[Q)].

e In CCS, bisimilarity is a congruence.




Final remarks
e A notion of behavioural equivalence should be a congruence

e ...but the notions of simulation and behavioural equivalence

can (and sometimes must) be relaxed to be more useful.
— Weak (bi)simulation
— Barbed (bi)simulation

— etc.

e The notion of (bi)simulation depends on the formalism, and

sometimes it is not a congruence (yet might be useful). There

are specialized notions, e.g. markovian bisimulation.

e The notion of bisimulation induces an algebra (set of axioms
for equations).

e Bisimulation is decidable, and there are standard algorithms
for testing it (but they are also formalism dependant).




