Announcements

e Assignment 3 posted. Deadline: March 1st at 23:55
e Midterm: March 3rd, at 6:00pm.

e Students taking BIOL 303 or BIOC 458 send me an

e-mail

e \WebCT disscusion board

D McGill

Prime numbers

e Problem: determine whether a given positive integer is
prime or not

D McGill

Prime numbers

e Analysis:

— Input: an integer n
— Output: a boolean: true if n is prime, false otherwise
— Definitions:
x A prime number is a number which is divisible only
by 1 and itself
x An integer a is divisible by b if there is an integer
k such that a = kb

— Assumptions: n is positive

D McGill 3

Prime numbers

e Basic idea: try to find a factor of n (i.e. a number
that divides n), between 1 and n. If such number exists.
then n is not prime, otherwise it is prime.

1. Set is_prime to true

2. Set/to be?2

3. While / < n, repeat:

(a) if / divides n, then set is_prime to false
(b) increment i by 1

4. Return the value of is_prime

D McGill 4

Prime numbers

boolean 1s_prime = true;
int 1 = 2;
while (i < n)

{
if (m % 1i==20)
{
1s_prime = false;
¥
1++;
¥

D McGill

Prime numbers

boolean 1s_prime = true;
int 1 = 2;
while (i < n)

{
if (m % 1i==20)
{
1s_prime = false;
1 = n;
¥
1++;
¥

D McGill

Prime numbers

boolean 1s_prime = true;
int 1 = 2;
while (i < n)

{
if (mn% 1 ==20)
{
1s_prime = false;
break;
¥
1++;
¥

D McGill

Nested Loops

while (condition)

{

statements ;

¥

But loops are statments, so it is possible to “nest” them:

while (condition)
{
statements;
while (condition2)

{

statements?2;

}

statements3;

¥

D McGill

Nested Loops: example

int row, column;
final int MAX_ROW = 6;
final int MAX_COLUMN = 19;

row = 1;
while (row <= MAX_ROW)
{

column = 1;

while (column <= MAX_COLUMN)

{
System.out.print (‘“¥”’) ;
column++;

}

System.out.println();

row++;

D McGill

Nested Loops: example

>k 5k 3k 3k 3k >k >k >k >k >k 5k 5k >k >k >k K >k >k 5k
>k 5k 5k 3k >k >k >k >k >k >k 5k 5k >k >k >k >k >k >k 5k
>k 5k 5k 3k >k >k >k >k >k >k 5k 5k >k >k >k >k >k >k 5k
>k 5k 3k 3k 3k >k >k >k >k 5k 5k 5k >k >k >k >k >k >k 5k
>k 5k K 3k 3k >k >k >k >k 5k 5k 5k >k >k >k >k >k >k 5k
>k 5k 5k 3k >k >k >k >k >k >k 5k 5k >k >k >k >k >k >k 5k

D McGill

10

Nested Loops: example

int row, column;
final int MAX_ROW = 6;
final int MAX_COLUMN = 19;

row = 1;
while (row <= MAX_ROW)
{

column = 1;

while (column <= MAX_COLUMN)

{
System.out.print (‘“¥”’) ;
column++;

}

System.out.println();

row++;

D McGill

11

Nested Loops: example

int row, column;
final int MAX_ROW = 6;
final int MAX_COLUMN = 19;

row = 1;
while (row <= MAX_ROW)
{

column = 1;

while (column <= row)

{
System.out.print (‘“¥”’) ;
column++;

}

System.out.println();

row++;

D McGill

12

X

Xk

Xk 5k
Xk %k k
5k 5k k >k
5k 5k %k >k >k

Nested Loops: example

D McGill

13

5k 5k %k >k >k
X5k 5k >k >k
Xk %k >k
Xk k

Xk

X

Nested Loops: example

D McGill

14

Nested Loops: example

int row, column;
final int MAX_ROW = 6;
final int MAX_COLUMN = 19;

row = MAX_ROW;
while (row >= 1)

{
column = 1;
while (column <= row)
{
System.out.print (‘“¥”’) ;
column++;
}
System.out.println();
row--;
}

D McGill

15

Printing primes

e Problem: print the first n prime numbers

e Analysis:

— Input: n, a positive integer
— Qutput: a list of the first n prime numbers

D McGill

16

Printing primes

e Design:

— General idea: check each natural number in order,
starting with 2, to see if it is prime or not. If it is
prime, print it, and increment a counter by 1. Once

the counter is over n, stop.
— Algorithm:
1. Set counter to 0
2. Set number to 2
3. While counter < n, repeat:
(a) If number is prime,
I. Print number
li. increment counter by 1
(b) Increment number by 1

D McGill

17

Printing primes

o Algorithm refinement (make an algorithm more precise):

1. Set counter to 0
2. Set number to 2
3. While counter < n, repeat:
(a) Set is_prime to true
(b) Set i to be 2
(c) While i < number, repeat:
I. if i divides number, then set is_prime to false
li. increment i by 1
(d) If is_prime is true,
I. Print number
li. increment counter by 1
(e) Increment number by 1

D McGill

18

Printing primes

int n, counter, number, 1;
boolean 1s_prime;
n = scanner.nextInt();

counter = 0;
number = 2;
while (counter < n) A
is_prime = true;
1 = 2;
while (i < number) {
if (mn % i ==0) { is_prime = false; break; }
1 =1+ 1;
+
if (is_prime) {
System.out.print(‘‘ > + number) ;
counter = counter + 1;

}

number = number + 1;

D McGill |

Bioinformatics and Computational
Biology

e The use of computational techniques to solve problems
in Biology such as

— Small scale Biology:

x Analyzing DNA,

* Analyzing the structure of proteins,
— Large scale Biology:

* Simulating eco-systems,
— ...etc

D McGill y

DNA

e DNA is a large molecule encoding information about the
structure and functions of organisms.

e DNA is made of two long chains or strings of molecules
called nucleotides, which are twisted so it has an helix

shape.

e There are four types of nucleotides, called Adenine,
Cytosine, Guanine and Thymine.

e The two chains are complementary in the sense that

— if there is Adenine in one chain, in the opposite chain
there is Thymine in the same position, and viceversa,
and

— if there is Guanine in one chain, there is Cytosine in
the opposite, and viceversa

— For example

AGGTAC
TCCATG

D McGill y

Problem

Given a host DNA sequence and a gene sequence, find
out if the gene occurs in the host or not, and if so, then
say in which position.

For example, given a the host
AGGTACGCC
and the gene

ACG

we say that the gene does occur in the host at position 4
(counting from 0.)

But the gene
ATCA

does not occur in the host.

D McGill

22

Analysis

e Input: two strings: the host, and the gene

e Output: a boolean which is true if the gene occurs in
the host. If so, then we also produce a natural number
which is the starting position of the gene in the host.

e Data representation: Abstraction

— The internal chemical structure of A, T, G and C is
irrelevant, so we abstract it.

— We do not need to represent both chains, because
they are redundant.

— The shape of the molecules is also irrelevant for this
problem, so we abstract it too.

— The gene and the host are represented as strings,

— The gene and the host are made up of only four

characters: A, T, G, and C.

o If the gene is larger than the host, then obviously it
cannot occur in It.

D McGill

23

Design: General algorithm

Compare the gene with the host from left to right:

1. Compare the gene with the host starting at the first
position of the host

2. If it matches then stop,

3. Otherwise, compare it, starting at the second position
of the host

4. If it matches then stop,

5. Otherwise, compare it, starting at the third position of
the host

0. ... etc.

D McGill

24

Design: General algorithm (contd.)

0
AGGTACGCTAGGCA
TAGG

No match, so we move on...

01
AGGTACGCTAGGCA
TAGG

No match, so we move on...

012
AGGTACGCTAGGCA
TAGG
012345678
AGGTACGCTAGGCA
TAGG

Match!

D McGill

25

Design: General algorithm (contd.)

1111
01234567890123

AGGTACGCTATGCA
TAGG

No match, so the gene doesn't occur in the host

D McGill

26

Design: A bit more precise...

1. Set position to 0

2. While position <= length of the host - length of the
gene, repeat:

(a) Compare the gene with the host starting from position
in the host

(b) If the gene matches, then we found it, so stop looking

(c) Otherwise, increment position by 1 and continue

D McGill

27

Design: Comparing the gene with the
host

1. Compare the character position of the host with the
first of the gene

2. It they are different then the gene doesn't match, so
stop

3. Otherwise, compare the character position+1 of the
host with the second of the gene

4. It they are different then the gene doesn't match, so
stop

5. Otherwise, compare the character position+2 of the
host with the third of the gene

6. ... etc

7. It we reach the end of the gene, then it matches

D McGill

28

Design: Comparing the gene and the
host (cont.)

0123
AGGTACGCTAGGCA
TAGG

We compare the first character of the gene...

3
AGGTACGCTAGGCA

TAGG

0

They match so we continue...

34
AGGTACGCTAGGCA

TAGG

01

D McGill

29

They match so we continue...

345
AGGTACGCTAGGCA

TAGG

012

They don't match so we stop the comparison and continue
were we left...

01234
AGGTACGCTAGGCA
TAGG

D McGill

30

Design: A bit more precise...

1. Set host_index to position
2. Set gene_index to 0
3. Set occurs to true

4. While host_index < the length of the host and
gene_index < the length of the gene, repeat:

(a) If the host nucleotide at host_index is different than
the gene nucleotide at gene_index, then:
I. Set occurs to talse, and
li. stop testing this position

(b) Increment the host_index by 1 and the gene_index
by 1

D McGill

31

Design: Putting it all toghether

1. Set occurs to false
2. Set position to 0

3. While position < the length of the host - length of the
gene, repeat:

a) Set host_index to position
b) Set gene_index to 0
c) Set occurs to true
d) While host_index < the length of the host and
gene_index < the length of the gene, repeat:
i. If the host nucleotide at host_index is different
than the gene nucleotide at gene_index, then:
A. Set occurs to false, and
B. stop testing this position
li. Increment the host_index by 1 and the gene_index
by 1
(e) If occurs is true then stop the main loop
(f) otherwise, increment the position by 1 and continue

(
(
(
(

D McGill ,

Implementation

public class GeneFinder

{
public static void main(Stringl] args)
{
String host, gene;
boolean occurs;
int position, host_index, gene_index;
char host_nucleotide, gene_nucleotide;

System.out.print ("Enter a host DNA seq: ");
host = scanner.nextLine();

System.out.print ("Enter a gene DNA seq: ");
gene = scanner.nextLine();

D McGill

33

Implementation (cont.)

occurs = false;
position = O;
while (position <= host.length()
- gene.length()) {
host_index = position;
gene_index = 0;
occurs = true;
while (host_index < host.length()
&& gene_index < gene.length()) {
host_nucleotide = host.charAt (host_index) ;
gene_nucleotide = gene.charAt(gene_index) ;

if (gene_nucleotide != host_nucleotide) {
occurs = false;
break;

by

host_index++;
gene_index++;
+
if (occurs) { break; }
positiont+;

¥

D McGill

34

if (occurs) {
System.out.println(‘‘The gene ’’ + gene
+ ‘“ occurs at >’ + position
+ ‘“ in the host > + host);
Iy
else {
System.out.println(‘“The gene ’’ + gene
+ ‘“ does not occur in the host ’’ +host);

D McGill)

Alternative forms

e There are two alternative syntactic forms for loops:
— The "do-while” loop:

do {
list_of_statements;
} while (boolean_expression);

— The “for’ loop:

for (stmtl; boolean_expression; stmt2) {
list_of_statements;

}

D McGill

36

Alternative forms

e A loop of the form

do A
S,
} while (C);

® is equivalent to

S,

while (C) {
S,

}

where S is any list of statements and C is any boolean

expression

D McGill

37

Alternative forms

int n, 1;

1 =1;

n=1;

while (i < n)

{
System.out.println(i);
1++;

+

B McGill

38

Alternative forms

int n, 1;

1 =1;

n=1;

do

{
System.out.println(i);
1++;

} while (i < n);

B McGill

Alternative forms

e A loop of the form

for (I; C; A) {
S,
t

® is equivalent to

I;

while (C) A
S,
A;

}

where I is a statement, called the “initializer’, Cis a boolean
expression, A is a statement, called the “advance’, and S is
any list of statements.

D McGill

40

boolean x
int 1, m;
m = 101;
for (i =

if (m %
+

Alternative forms

= true;

m-1; 1>1&& x; 1--) 1
i ==0) x = Ix;

D McGill

41

Alternative forms

boolean x = true;
int 1, m;

m = 101;
1=m-1;

while (i > 1 && x) {
if (m% 1i==0) {

x = Ix;

i--;

¥

D McGill

42

Alternative forms

while(C)
{

S;
t

iIs equivalent to

do {
if (!'C) { break; }
S;

} while (true);

and also equivalent to

for (; C;) {
S,
t

D McGill

43

The end

D McGill

44

