School of Computer Science — Faculty of Science — McGill University

COMP-202 — Introduction to Computing 1
Final Exam - Version 1
April 20, 2005

Examiners: Marc Lanctot, Ernesto Posse, Alex Batko

Associate examiner: Joseph Vybihal

Last name

First name

Id number

Section [] 1 (Marc Lanctot) [] 2 (Ernesto Posse) | | 3 (Alex Batko)

Instructions
e No notes, notebooks, textbooks, calculators, cell phones, pagers, laptops or handheld computers are
allowed in this exam.
For section 1 (multiple choice) mark your answer in the front page. The rest of
the questions are to be answered in the booklet.
Read the questions carefully.
Language translation dictionaries are permitted.
e Answers may be given in either English or French.

Grading

Section 1: Multiple choice Section 1 mark: /20
Question Q1 Q2 Q3 Q4 Q5 Q6

Your answer
Mark /2 /3 /3 /2 /3 /3
Question Q7 Q8

Your answer

Mark /2 /2

Section 2: Short problems Section 2 mark: / 40
Question | Q1 Q2 Q3 Q4
Mark /4 /8 /14 /14

Section 3: Programming Section 3 mark: / 40
Question | Q1 Q2
Mark /16 /24

Total: / 100

COMP-202, Lanctot, Posse, Batko Page 1 out of ??

School of Computer Science — Faculty of Science — McGill University

Terminology reference table

Term

‘ Synonyms/Meaning

Instance

Object

Object instantiation

Object creation, creating an instance of a class

Instance variable

Attribute, non-static variable

Class variables

Static variable

Normal method

Non-static method

Class method

Static method

Method signature

Method header

Method invocation

Method call, sending a message to an object (normal methods), asking
an object to perform a task (normal methods).

Argument

Parameter

Base class

Parent class, super class

Derived class

Child class, subclass

Inherits from

Extends

1 Multiple choice

Question 1 Which of the following creates an object?

a)
b

C

int n =

ez

Answer e)

class A { String s; %}
1729;

n = gen.nextInt();
String getName()

Scanner s = new Scanner(System.in);

Question 2 Which of the following is true?

a)
b

@

[eMiNe)
S e N

Answer b)

COMP-202, Lanctot, Posse, Batko

A class is the same thing as an object

A class defines a data-type

All objects in a class have the same state

The values of the attributes of a class are shared by all its instances
A method is a class with parameters

Page 2 out of ??

School of Computer Science — Faculty of Science — McGill University

Question 3 Suppose that there is a class BankAccount which has an attribute balance, and
a class CheckingAccount that extends BankAccount and has an attribute monthly_fee.
Which of the following statements is false?

a) CheckingAccount cannot extend any other class.

b) If balance is shadowed (redefined in CheckingAccount,) then it is still possible to
access balance from BankAccount.

c) It is not possible to access monthly_fee directly in class BankAccount.

d) A BankAccount object is the same as a CheckingAccount object where the
monthly_fee is 0.0.

e) If there is a class SavingsAccount which extends BankAccount and you modify the
balance of a CheckingAccount object, then the balance of SavingsAccount is not
updated.

Answer d)

Question 4 Which of the following is true?

Both an interface and an abstract class can be instantiated
Neither an interface nor an abstract class can be instantiated
An interface can be instantiated, while an abstract class cannot
An interface cannot be instantiated, while an abstract class can
Abstract classes cannot have subclasses

cecze

Answer b)

Question 5 Which of the following is false?

a) If a method expects a parameter of type T, then it can be passed as argument any
instance of the parent class of T.

b) If a method expects a parameter of type T, then it can be passed as argument any
instance of T or any of its subclasses.

c) If a method has a return type T, then it can return an instance of a subclass of T.

d) If vis of type S, and S is a subclass of T, then the casting (T)v is possible.

e) If visof type T, and S is a subclass of T, then the casting (8)v is possible, provided
that v has been assigned a reference of type S.

Answer a)

COMP-202, Lanctot, Posse, Batko Page 3 out of ??

School of Computer Science — Faculty of Science — McGill University

Question 6 Consider the following program fragment:

Scanner
int num
try {

scanner = new Scanner(System.in);

=0, sum = 0;

while (true) {

}
sum = sum + num;
}
}
catch (Exception e) {
System.our.println(““Oops! >’ + e);
}
System.out.println(‘“‘sum = > + sum);

Suppose that this fragment is executed, and the user types 34,

num = scanner.nextInt();
if (num == -1) {
break;
}
else if (num < 0) {
throw new Exception();

order will the statements be executed?

a) 1,2, 3,4
b) 1,234
¢ 1,234
d) 1,234
e) 1,2, 3 4

Answer d)

I’

, 11, 12, 13

.5, 6,8, 10, 13

,5,6,8,10,4,5,6,7, 11,12, 13

.5, 6,8,10,4,5,6,8,9,11, 12, 13
5,6,7,8,9,10, 11, 12, 13

7 bl

//
//
//
//
//
//
//

//
//

//

//

//

//

stmt
stmt
stmt
stmt
stmt
stmt
stmt

~NOo O WN -

o

stmt
stmt 9

stmt 10
stmt 11
stmt 12

stmt 13

and then types -82. In which

Question 7 It is a good idea to make attributes of a class private because:

a) Because making attributes public forces them to be shared by all instances of its

class.

b) Because they can be inherited.
c) Because private attributes are accessible from other classes, allowing other classes

to modify the state of an object any time.

d) Because public attributes are accessible from other classes, which could modify the

state of an object in some unwanted way.

e) Because otherwise we could define only public and protected methods in the class.

Answer d)

COMP-202, Lanctot, Posse, Batko

Page 4 out of ??

School of Computer Science — Faculty of Science — McGill University

Question 8 In large applications it is often desirable to have general helper functions that do
not implement actions performed on, or by objects. This is, in addition to having normal
methods it is useful to have object-independent methods that perform general tasks. For
example, in a statistical application, a helper function could be a method that returns the
average of an array of integers. Since helper functions do not act on objects, it is unnecessary
to create an object to perform the task. What is the best way to organize a program that
uses helper functions and avoids creating objects of the class(es) containing helper functions?

a) Use an array of helper methods.

b) Define an abstract class (or classes) containing the helper functions implemented as
abstract methods.

c) Define one or more helper classes containing the helper functions implemented as
static methods.

d) Define a base class containing the helper methods, and making sure that all other
classes extend this base class.

e) Define a helper interface, making sure that any class that needs a helper function
implements that interface.

Answer c)

COMP-202, Lanctot, Posse, Batko Page 5 out of ??

School of Computer Science — Faculty of Science — McGill University

2 Short problems
Question 1 Consider the following class definition:

class Person

{
String name;
Person(String n) { name = n; }
void wakeup(Brain x)
{
System.out.print(name);
x.activate(‘‘starts’);
}
}
public class Test
{
public static void main(String[] args)
{
Person a = new Person(‘“‘Newton’’);
Brain b = new Brain();
a.wakeup(b) ;
}
}

This program is missing a class Brain. Write a definition of class Brain so that the program prints
“Newton starts the day”.

Answer Class brain must have a method activate that expects a String as argument and doesn’t
return anything:

class Brain

{
void activate(String s)
{
System.out.println(‘“ > + s + ¢ the day’’);
}
}

COMP-202, Lanctot, Posse, Batko Page 6 out of ??

School of Computer Science — Faculty of Science — McGill University

Question 2 What will the following print if method test1 in class Test is invoked?

class Banner {
String message;
void set(String w) { message = w; }
String get() { return message; }
}
class Test {
static String w;
static void test1()
{
w=“17";
String x = “2 7’
Banner y = new Banner();
y.set(“3 ”°);
String[] z = new String[2];
z[0] = 4
z[1] = 6
process(x, y, z);
System.out.println(w + x + y.get() + z[0] + z[1]);

}
static void process(String a, Banner b, String[] c)
{
System.out.println(w + a + b.get() + c[0] + c[1]);
w ="
a = “7";
b.set (‘8 ’);
c[0] = <9 %

}

Answer static variables are accessible in all static methods in the class. Parameters of a method
have local scope. Values whose type is an object are passed by reference. So are arrays.

12345

6 2895

COMP-202, Lanctot, Posse, Batko Page 7 out of ??

School of Computer Science — Faculty of Science — McGill University

Question 3 Suppose that you are developing a program to keep track of all the items in stock
at some store. There are many different kinds of items, but all of them have an ID number,
a name and a cost. Therefore, each item belongs to a class which implements the following
interface:

public interface Identifiableltem

{
public int getId();
public String getName();
public double getCost();
}

Given an array of IdentifiableItems, an item x is said to be unique if there is no other
item in the array with the same name and ID as z. Write a method that receives an array
of IdentifiableItems, and returns the number of unique items. This is, duplicate items
should not be counted.

Answer There are several possible algorithms. A simple one would check for each element in the
array if there is another one (in a different position) with the same Id and name. If so, it
is duplicated and therefore it should not be counted. If the element is not duplicated, it is
unique, and therefore a counter is incremented.

The full implementation is in the next page.

COMP-202, Lanctot, Posse, Batko Page 8 out of ??

School of Computer Science — Faculty of Science — McGill University

static int countUniques(IdentifiableItem[] 1list)

{
int counter, main_index, secondary_index;
boolean unique;
counter = 0;
main_index = 0;
while (main_index < list.length)
{
unique = true;
secondary_index = 0;
while (secondary_index < list.length)
{
if (secondary_index != main_index)
{
if (list[main_index].getId() == list[secondary_index].getId()
&% list[main_index].getName() == list[secondary_index].getName
{
unique = false;
}
}
secondary_index++;
}
if (unique)
{
counter++;
}
main_index++;
}
return counter;
}

COMP-202, Lanctot, Posse, Batko Page 9 out of ??

School of Computer Science — Faculty of Science — McGill University

Question 4 Write a method called merge that takes as argument two sorted arrays of integers
a and b, and returns a sorted array of integers that combines all of the values stored in a
and b. For example, if a is |3,4,7,7,9,10,13] and b is |2, 2, 2, 5, 8, 9, 11, 11] then the method
returns an array [2, 2, 3,4,5,7,7,8,9,9, 10, 11, 11, 13]. Hint: take advantage of the fact
that the two given arrays are already sorted.

Answer Create an array big enough to hold both arrays, and traverse both arrays in parallel. At
each time, decide which is the smallest element between the current element from a and the
current element from b. Put that smallest in the resulting array, and move only the index of
the array from which the smallest was chosen. Repeat until all elements have been traversed.

static int[] merge(int[] a, int[] b)

{
int total_length = a.length + b.length;
int[] result = new int[total_length];
int i, j, k, min;
i=20;
j=0;
k = 0;
while (k < total_length)
{
if (i >= a.length)
{
min = b[j];
j+t;
}
else if (j >= b.length)
{
min = alil;
i++;
}
else if (alil <= b[j1)
{
min = alil;
i++;
}
else
{
min = b[j];
jtt;
}
result[k] = min;
kt++;
}
return result;
}

COMP-202, Lanctot, Posse, Batko Page 10 out of ??

School of Computer Science — Faculty of Science — McGill University

3 Programming problems

Question 1 A Matryoshka doll is a Russian nesting doll. A set of Matryoshka dolls consists of
a wooden figure which can be pulled apart to reveal another similar but of course slightly
smaller figure inside. The smaller figure will in turn have another figure inside it, and so on,
such that there are usually six or more nested dolls in a set. In other words, a Matryoshka
doll has a Matryoshka doll inside it.

Implement this recursive concept of a Matryoshka doll by writing a class MatryoshkaDoll.
A Matryoshka doll of size n has a (stores a) Matryoshka doll of size n — 1 inside it. The
constructor of this class must take n the number of dolls in the set as an argument, and it
must create the nested set of dolls by creating a Matryoshka doll with n — 1 dolls inside, or
no dolls if n = 0. The class should also have two additional methods; one named count that
recursively counts and returns the number of dolls in the set; and one named toString that
recursively traverses the set of dolls and returns the word "pretty" for each doll.

Using this class, the following statements...

MatryoshkaDoll prettyDolls = new MatryoshkaDoll(5);
System.out.println("Number of dolls: " + prettyDolls.count());
System.out.println("My pretty dolls: " + prettyDolls);

...should produce the following output:

Number of dolls: 5
My pretty dolls: pretty pretty pretty pretty pretty

You do not need to write a driver class with a mein method for this problem.

Answer Since a Matryoshka doll has a doll inside it, there is an aggregation relationship between
doll objects: each doll object must have a reference to another doll object. In addition there
must be a constructor and two methods: count and toString.

The full implementation is on the next page.

COMP-202, Lanctot, Posse, Batko Page 11 out of ??

School of Computer Science — Faculty of Science — McGill University

public class MatryoshkaDoll

{
private MatryoshkaDoll doll_inside;
public MatryoshkaDoll(int number0fDolls)
{
if (numberO0fDolls > 0)
{
doll_inside = new MatryoshkaDoll(numberOfDolls - 1);
}
else
{
doll_inside = null;
}
}
public int count()
{
if (doll_inside == null)
{
return O;
}
else
{
return doll_inside.count() + 1;
}
}
public String toString()
{
if (doll_inside == null)
{
return "";
}
else
{
return "pretty " + doll_inside.toString();
}
}
}

COMP-202, Lanctot, Posse, Batko Page 12 out of ??

School of Computer Science — Faculty of Science — McGill University

Question 2 Many computer applications deal with representations of geometrical shapes, such

as circles, triangles, rectangles, etc. Suppose that you are writing an application that deals
with such geometrical shapes. Initially the application deals only with circles, rectangles and
composite shapes. But, new types may be added later.

e A rectangle is a shape that has a width and a height, and the location (z,y) of its
top-left corner (for simplicity, assume that shapes are aligned with the X and Y axis,
and not rotated.)

e A circle is a shape that has a radius, and the location (z,y) of its center.

e A composite shape is a shape that has up to 100 shapes. It can contain any shape:
circles, rectangles and other composite shapes. It should be possible to add a shape
(any kind of shape) to a composite shape.

e Any shape has a bounding boz. The bounding box of a shape is the smallest rectangle
that contains the shape.

Write a set of classes to represent these shapes, such that for any shape it is possible to ask
the shape what is its bounding box.

It should be possible to define new types of shapes so that your classes work without modi-
fications.

Hint: it might be easier to compute the bounding box of a composite shape whenever you
add a new shape to the composite. The composite shape asks the shape being added which
is its bounding box, and using this, it updates its overall bounding box.

You may use the static methods min and max from the Math class, that compute the smallest
(resp. largest) of two given numbers. Their signatures are

public static double min(double a, double b)
public static double max(double a, double b)

You do not need to write a driver class with a mein method for this problem.

Answer There are several possible solutions, but all of them share the same characteristics:

There must be classes: Shape, Rectangle, Circle and CompositeShape,

Rectangle, Circle and CompositeShape must be subclasses of Shape (inheritance is the “is-a”
relationship.)

All classes must have at least a method that returns the shape’s bounding box, which is a
Rectangle.

The CompositeShape class must have a collection of Shapes as attribute (aggregation) and
a method to add any Shape.

None of the solutions rely on Shape-specific attributes, only on the fact that they can give
you their bounding box. This is fundamental in order to allow the possible definition of new
types of Shapes.

Here we provide three different solutions: two basic solutions (as expected,) and a solution that
deals with the subtle problem of adding shapes to composite shapes inside other composite shapes
(for bonus points.)

COMP-202, Lanctot, Posse, Batko Page 13 out of ??

School of Computer Science — Faculty of Science — McGill University

Solution 1 Since every shape has a bounding box, Shape objects should have a reference to its
bounding box (a Rectangle), and a method that returns this reference. This is a default
method, and is inherited by the subclasses, so there is no need for Rectangle, Circle and
CompositeShape to redefine it. The bounding box reference is protected rather than private
so that the subclasses can modify it. The subclasses define the value of the bounding box in
their constructor, and CompositeShape updates its bounding box every time a new shape is
added to it.

class Shape

{
protected Rectangle bounding_box;
public Rectangle getBoundingBox()
{

return bounding_box;

class Rectangle extends Shape
{
private double x, y, width, height;
public Rectangle(double x, double y, double width, double height)
{
this.x = x;
this.y = y;
this.width = width;
this.height = height;
bounding_box = this;
}
public double getX() { return x; }
public double getY() { return y; }
public double getWidth() { return width; }
public double getHeight() { return height; }

class Circle extends Shape
{
private double x, y, radius;
public Circle(double x, double y, double radius)
{
this.x = x;
this.y = x;
this.radius = radius;
bounding_box = new Rectangle(x - radius, y + radius,
2 % radius, 2 * radius);

COMP-202, Lanctot, Posse, Batko Page 14 out of ??

School of Computer Science — Faculty of Science — McGill University

class CompositeShape extends Shape
{
private Shape[] shape_list;
private int first_available;

public CompositeShape()
{
shape_list = new Shape[100];
first_available = 0;
bounding_box = new Rectangle(0, 0, 0, 0);
}
public void add_shape(Shape s)
{
if (first_available < shape_list.length)
{
shape_list[first_available] = s;
first_available++;
updateBoundingBox (s) ;
}
}
private void updateBoundingBox(Shape s)
{
Rectangle new_shape_box = s.getBoundingBox();
double s_x1 = new_shape_box.getX();
double s_yl = new_shape_box.getY();
double s_x2 = s_x1 + new_shape_box.getWidth();
double s_y2 = s_yl - new_shape_box.getHeight();
double my_x1 = bounding_box.getX();
double my_yl = bounding_box.getY();
double my_x2 = my_x1 + bounding_box.getWidth();
double my_y2 = my_yl - bounding_box.getHeight();
double new_x1 = Math.min(s_x1, my_x1);
double new_yl = Math.max(s_yl, my_yl);
double new_x2 = Math.max(s_x2, my_x2);
double new_y2 = Math.min(s_y2, my_y2);
bounding_box = new Rectangle(new_x1, new_yli,
new_x2 - new_x1, new_yl - new_y2);

COMP-202, Lanctot, Posse, Batko Page 15 out of ??

School of Computer Science — Faculty of Science — McGill University

Solution 2 An alternative approach is that shapes do not necessarily need to store the actual
bounding box, they only need the capability to provide it to whomever asks for it. Therefore,
Shape does not have a bounding box attribute, but it has an abstract method that returns the
bounding box. This method is abstract to force the subclasses to define it, since computing
the bounding box is specific to each type of shape. The Shape abstract class could also be
an interface. In this approach, the composite shape as any other, doesn’t store the bounding
box, so it needs to recompute its entire bounding box every time it is asked for it.

abstract class Shape

{
public abstract Rectangle getBoundingBox();
}
class Rectangle extends Shape
{
private double x, y, width, height;
public Rectangle(double x, double y, double width, double height)
{
this.x = x;
this.y = y;
this.width = width;
this.height = height;
}
public Rectangle getBoundingBox()
{
return this; // or new Rectangle(x, y, width, height);
}
public double getX() { return x; }
public double getY() { return y; }
public double getWidth() { return width; }
public double getHeight() { return height; }
}
class Circle extends Shape
{
private double x, y, radius;
public Circle(double x, double y, double radius)
{
this.x = x;
this.y = x;
this.radius = radius;
}
public Rectangle getBoundingBox()
{
return new Rectangle(x - radius, y + radius, 2 * radius, 2 * radius);
}
}

COMP-202, Lanctot, Posse, Batko Page 16 out of ??

School of Computer Science — Faculty of Science — McGill University

class CompositeShape extends Shape

{
private Shape[] shape_list;
private int first_available;
public CompositeShape()
{
shape_list = new Shape[100];
first_available = 0;
}
public void add_shape(Shape s)
{
if (first_available < shape_list.length)
{
shape_list[first_available] = s;
first_available++;
}
}
public Rectangle getBoundingBox()
{
Rectangle bounding_box = new Rectangle(0, 0, 0, 0);
int i = 0;
while (i < first_available)
{
Rectangle r = shape_list[i].getBoundingBox();
bounding_box = combineBoxes(bounding_box, r);
it++;
}
return bounding_box;
}
private Rectangle combineBoxes(Rectangle a, Rectangle b)
{
double a_x1 = a.getX();
double a_yl = a.getY();
double a_x2 = a_x1 + a.getWidth();
double a_y2 = a_yl - a.getHeight();
double b_x1 = b.getX();
double b_yl = b.getY();
double b_x2 = b_x1 + b.getWidth();
double b_y2 = b_yl - b.getHeight();
double new_x1 = Math.min(a_x1, b_x1);
double new_yl = Math.max(a_yl, b_yl);
double new_x2 = Math.max(a_x2, b_x2);
double new_y2 = Math.min(a_y2, b_y2);
return new Rectangle(new_x1, new_yl,
new_x2 - new_xl, new_yl - new_y2);
}
}

COMP-202, Lanctot, Posse, Batko Page 17 out of ??

School of Computer Science — Faculty of Science — McGill University

Solution 3 This solution deals with a sublte problem (we were not expecting you to figure this
out:) What happens when we add a shape to a composite shape that is already inside some
(parent) composite shape? The answer is that it depends on when do you compute the
bounding box. The two previous solutions provided two basic alternatives: in solution 1,
whenever a shape was added to the composite shape, the bounding box was updated; in
solution 2, the entire bounding box is recomputed every time we invoke the getBoundingBox
method. The second solution does not suffer from the problem described above, since the
entire bounding box of the parent is recomputed whenever we demand what is the parent’s
bounding box. The problem only arises in the first solution.

So, how do we take advantage of the first solution and avoid the problem of modifying
inner shapes? The solution is that if each CompositeShape knows who its “parent” is (the
CompositeShape that contains it,) then whenever we update a shape, a message is sent to
its parent to update its bounding box as well, which in turn may ask its own parent to
update itself. This recursive process stops when a composite shape has no parent. In this
solution, it is necessary to assign a parent to any composite shape. This could be done in
the constructor, or in a setter method. Here we simply specify it in the constructor. If a
composite shape has no parent, its parent attribute is set to null.

In this solution, classes Shape, Rectangle and Circle are the same as in solution 1.

class Shape

{
protected Rectangle bounding_box;
public Rectangle getBoundingBox()
{
return bounding_box;
}
}
class Rectangle extends Shape
{
private double x, y, width, height;
public Rectangle(double x, double y, double width, double height)
{
this.x = x;
this.y = y;
this.width = width;
this.height = height;
bounding_box = this;
}
public double getX() { return x; }
public double getY() { return y; }
public double getWidth() { return width; }
public double getHeight() { return height; }
}

COMP-202, Lanctot, Posse, Batko Page 18 out of ??

School of Computer Science — Faculty of Science — McGill University

class Circle extends Shape

{
private double x, y, radius;
public Circle(double x, double y, double radius)
{
this.x = x;
this.y = x;
this.radius = radius;
bounding_box = new Rectangle(x - radius, y + radius,
2 * radius, 2 * radius);
}
}

COMP-202, Lanctot, Posse, Batko Page 19 out of ??

School of Computer Science — Faculty of Science — McGill University

class CompositeShape extends Shape {
private Shape[] shape_list;
private int first_available;
private CompositeShape parent;
public CompositeShape()
{
shape_list = new Shape[100];
first_available = 0;
bounding_box = new Rectangle(0, 0, 0, 0);
parent = null;
}
public CompositeShape(CompositeShape container)
{
shape_list = new Shape[100];
first_available = 0;
bounding_box = new Rectangle(0, 0, 0, 0);
parent = container;
}
public void add_shape(Shape s)
{
if (first_available < shape_list.length)
{
shape_list[first_available] = s;
first_available++;
updateBoundingBox (s) ;
}
}
private void updateBoundingBox(Shape s)
{
Rectangle new_shape_box = s.getBoundingBox() ;
double s_x1 = new_shape_box.getX();
double s_yl = new_shape_box.getY();
double s_x2 = s_x1 + new_shape_box.getWidth();
double s_y2 = s_yl - new_shape_box.getHeight();
double my_x1 = bounding_box.getX();
double my_yl = bounding_box.getY();
double my_x2 = my_x1 + bounding_box.getWidth();
double my_y2 = my_yl - bounding_box.getHeight();
double new_x1 = Math.min(s_x1, my_x1);
double new_yl = Math.max(s_yl, my_yl);
double new_x2 = Math.max(s_x2, my_x2);
double new_y2 = Math.min(s_y2, my_y2);
bounding_box = new Rectangle(new_x1, new_yl,
new_x2 - new_xl, new_yl - new_y2);
if (parent != null) parent.updateBoundingBox(s);

COMP-202, Lanctot, Posse, Batko Page 20 out of ??

