Software organization

e \Well-designed software is organized based on:

— Modularity: Components are independent modules.

— Reusability: Components are reusable.

— Integration: Components can be easily integrated
with one another.

— Abstraction: Irrelevant details, and details about how
a component works, are hidden from the clients of
the component.

e Object-Oriented Programming (OOP) is a set of soft-
ware development techniques from analysis to imple-
mentation, to organize software based these principles.

e In OOP, modules are implemented as classes.

D McGill

Objects and classes

e A class is a ‘type’ of objects. Objects are the values of
a class.

e A class is defined by the attributes shared by all its
objects.

e |n analysis we should:

— Discover the classes of objects involved (physical or
abstract,) and
— |dentify the attributes of those classes.

e These translate into code as "class definitions"

public class ClassName

{

Attribute definitions

Method definitions
t

D McGill

Class definition structure

e Attribute definitions
type variable;

where type is either a primitive data type (int, boolean,
etc.) or the name of a user-defined class.

D McGill

Class definition structure (contd.)

e Method definitions

type method_name (1ist_of_parameters)

{

statements ;

where type is either void (the method doesn't return
anything,) a primitive data type or a user-defined data
type. The list_of_parameters is of the form

typel argl, type2 arg2, ..., typen argn

D McGill 4

Example

public class Student
{
String name;
long 1id;
String program;
String faculty;

void set_name(String s)

{
name = s;
by
void set_id(long num)
{
id = num;
¥

// Continues below ...

D McGill

String get_name()

{
return name;
¥
long get_id()
{
return 1id;
b
void set_prog_and_faculty(String p,
String f)
{
program = p;
faculty = f1;
b

String get_program()
{ return program; }

String get_faculty()
{ return faculty; ?}
} // Class Student ends here.

D McGill

An object of the Student class

A

(

set_name | (Student's state) get_name
name | Adam Smith
[setid | id [119876543

[get_program |

program |Economics

set_prog_and_faculty faculty T TERERTy

N y,
N J

D McGill

Objects are not classes

e A class can be thought of as a data type. Its values are
objects.

e An object is an instance of a class.

e An object has its own separate identity and its own
separate state.

e Each object is stored in different memory locations.

D McGill

Individual identity of objects

Student

+name: String

+id: | ong

+program String
+faculty: String
+set_name(n:String): void
+set_id(n:long): void
+set_prog_and_faculty(p:String,f:String): void
+get_name(): String
+get_id(): long
+get_program(): String
+get_faculty(): String

dave \

name: "David Hilbert"
id: 1117123451
program: ™"

faculty: ™"

bert \ name: "Bertrand Russell"
id: 2618010101
program: ™
faculty: ™

D McGill

Creating objects

e To create objects of a given class:
First: Declare a variable of that type:
class_name variable;

Second: Assign the variable a new instance, using the
new keyword:

variable = new class_name () ;

e Example

Student dave;

dave = new Student() ;
e The two can be done in one line:

Student bert = new Student():

D McGill

10

Accessing attributes

e The attributes of an object can be accessed directly
using the dot operator:

variable.attribute
...but only if the attribute exists in the class of the variable.
e Example

dave.name = ‘David Hilbert’’;
dave.id = 1117123451,
System.out.println(dave.name) ;
System.out.println(dave.id);

bert.name = ‘‘Bertrand Russell’’;
bert.id = 2618010101;
System.out.println(bert.name) ;
System.out.println(bert.id);

D McGill

11

Sending messages to objects

e To interact with an object we send it a message by
calling, or invoking one its methods.

e Calling a method is done by using the dot operator, and
passing parameters or arguments (if any):

variable.method_name (arguments)

where the type of variable is a class which has a method
called method_name, and arguments is a coma-separated
list of values whose type matches those of the method's
parameters.

D McGill

12

Sending messages (contd.)

e For example:

bert.set_prog_and_faculty(‘Philosophy’’, “‘Arts’’);

dave.set_id (009876543) ;
e A method call
a.m(b, c, d);

could be interpreted as “sending the message m to the object
a with arguments b, ¢, and d.”

D McGill

13

Method calls in context

e There are two forms of method calls:
— Method call as a statement

— Method call as an expression

e A method call is a statement if its return type is void,
otherwise it is an expression.

e If a method call is an expression, it must appear in a
context that allows expressions, such as:
A. the right hand-side of an assignment:

long n = dave.get_id();
String s = dave.get_program() ;

B. ..or, the argument of another method:

System.out.println(dave.get_id());
bert.set_id(dave.get_id());

e But the types must match!

D McGill

14

Methods as functions

e Methods can be viewed as a “black box" with inputs and

outputs:

argl ———>
ar g2 ——>

et hod > return val ue

ar gn ——>

e There are three kinds of methods:

— Mutators: Modify the state of objects,
— Accessors: Return information about the object,
— Constructors: Initialize a newly created object.

D McGill

15

Method types

e Mutators are usually void methods, which do not return
anything, but modify the state of the object:

argl ———>
arg2 ———>

argn ———>

met hod

e Accessor methods may only return values without ex-
pecting any arguments as input:

nmet hod

——> return val ue

D McGill

16

Constructors

e Special methods, whose syntax is given by

class_name (1ist_of_arguments)

{

statements;

e For example:

public class Student {

//. ..
Student (String n, long i)
{
name = n;
id = i;
¥
/...

D McGill

17

Constructors (contd.)

e A constructor method gets executed when a new object
of the class gets created using the new keyword. There-
fore, the general syntax for the expression used to create
objects is:

new class_name (list_of_actual_arguments);
e For example

Student al;
al = new Student(‘“‘Alan Turing’’, 110011223331);

D McGill

18

Software clients

o A client of a class C (or software component in general)

is any other class (or software component) which uses
C.

e For example:

public class StudentDatabase {
public static void main(Stringl[] args)
{
Student dave = new Student(‘‘David Hilbert’’,

1223334444) ;
Student bert = new Student(‘‘Bertrand Russell’’,

1111222334) ;
dave.set_prog_and_faculty(‘“Math’’,‘Science’’);

/] ..

D McGill

19

Classes are data types

public class Faculty

{
String name;
int number_of_programs, number_of_professors;
//...

¥

public class Student
{
String name;
long 1d;
String program;
Faculty faculty;

/] ...
void set_prog_and_faculty(String p, Faculty f)
{
program = p;
faculty = f;
by
//. ..

by
D McGill

20

public class StudentDatabase
{

public static void main(Stringl[] args)

{
Faculty sc = new Faculty();

sc.name = ‘‘Science’’;

Student in = new Student(‘‘Isaac Newton’’,
1232112341) ;

in.set_prog_and_faculty(‘“Physics’, sc);

//...

System.out.println(sc.name) ;
System.out.println(in.name) ;

D McGill

21

Object structure in memory

_ Student
In \ name: "Isaac Newton"

id: 1232112341

program: "Physics"

faculty: |I|
sc

\ Faculty

name; "Science"]

number_of programs: 9
number_of_professors: 500

in.set_prog_and_faculty(‘“‘Physics’, new Faculty());

doesn't create the variable sc, but then, the Faculty
object cannot be shared between different Student objects.

D McGill

22

Scope
e Different classes can have attributes and methods which
have the same names.

e For example given the following class definition
public class C {

int a;

//. ..

the variables x.a and y.a are different memory locations
in the following client:

public class D {

void m()

{
C x = new CQ);
Cy =new CO;
X.a = 3;
y.a = 9;

}

¥

D McGill

23

Scope (contd.)

e This also applies if the attributes are in different classes:

public class C {

int a;
/] ...
¥
public class E {
int a;
/] ...
¥
public class D {
void m()
{
C x = new C(O);
Ey = new EQ;
X.a = 3;
y.a = 9;
by
¥

D McGill

24

Scope (contd.)

e The scope of a variable, a parameter, an attribute or a
method is the part of the program that can access that
variable, attribute or method.

e The scope of a parameter of a method is the body of
the method.

e Variables declared in the body of a method are called
local variables, which means that their scope is only the
body of the method.

e The direct scope of an attribute of a class or a method
is the class itself (e.g. the direct scope of id is the
Student class.)

e However, the indirect scope of an attribute of a class or a
method is the rest of the program (e.g. the id attribute
can be accessed by other clients with the expression
var.id, where var is of type Student.)

D McGill

25

D McGill

26

