The big picture

Problem solving
by computer

Analysis

| How computers work | Algorithms

Implementation

/

I Programming I

Software

Hardware

Languages

Object-Oriented
Programming

Interpreters Syntax | [Semantics

D McGill



Object-Oriented Programming

Classes
Data types Modules
Objects
State Behaviour
Attributes Methods Static methods

Statements:
- Variable declaration
- Assignment
- Conditional
- Loop
- Method call

Algorithms

D McGill



Static methods

e Normal (non-static) methods represent the behaviour of
objects

e Static methods are not associated with objects
e Static methods are only “services’ provided by a class

e For example:

— Keyboard.readString
— Keyboard.readInt

— Math.sqrt

— Math.pow

— ...etc

D McGill



Calling normal methods

e \When calling a non-static method, the syntax is

variable.method_name (argl,arg2,...,argn)

where variable has a reference to an object (eg.
variable = new MyClass () ;)

For example:

String title = new String(‘Lock, Stock’);
int size = title.length();
char initial = title.charAt(0);

D McGill



Calling static methods

e \When calling a static method, the syntax is

class_name.method_name (argl,arg?2,...,argn)
Forexample:

double power = Math.pow(2.0, 3);
int n = Keyboard.readInt();

D McGill



Declaring methods

e Declaring normal methods

type method_name (typel argl, type2 arg2,
., typen argn)
{

statements ;

e Declaring static methods

static type method_name (typel argl, type2 arg2,
., typen argn)
{

statements;

D McGill



Example

public class A

{
void p()
{
System.out.println(‘‘Hello”’);
by
static void q()
{
System.out.println(‘‘Good bye’’);
by
¥

(Note: Classes can have both static and non-static meth-

ods)

D McGill



Example (contd.)

public class B

{
public static void main(String[] args)
{
A.qQ); // Prints Good bye
A x = new A(); // Creates an A object
x.p0); // Prints Hello
A.pQO; // Compile-time Error
x.q0); // Prints Good bye
¥
b

e A static method can be called from a non-static context,
but...

e A non-static method cannot be called from a static
context, because in order to call a non-static method,
you need to provide a reference to an object.

D McGill



Accessing static methods from
non-static methods

public class A

{
void p()
{
System.out.println(‘“Hello”’);
qO);
¥
static void q(Q)
{
System.out.println(““Good bye’’);
¥
¥
is OK

D McGill



Accessing non-static methods from
static methods

public class A

{
void p()
{
System.out.println(‘“Hello”’);
}
static void q()
1
System.out.println(‘“‘Good bye’’);
pO;
}
¥

. is not OK, because in method g, there is no reference
“this" to an object to which the message "p ()" would be
sent.

D McGill

10



When to use each kind of method

e Non-static methods are used to describe the behaviour
of objects.

e Static methods are used to describe functions, or services
that a class provides, independently of any object of that
class.

D McGill .



Example

import java.lang.Math;
public class Distance
{
static double euclidean(float x1, float yi,
float x2, float y2)
{
return Math.sqrt(Math.pow(x1-x2,2)
+ Math.pow(yl-y2,2));
by
static double manhattan(float x1, float yi,
float x2, float y2)

{
return Math.abs(x1-x2)+Math.abs(yl-y2);

D McGill

12



Example (contd.)

import csl.Keyboard;
public class ComputeDistance

{
public static void main(Stringl[] args)
{
float x1, y1, x2, y2;
double e, m;
x1 = Keyboard.readFloat();
y1 = Keyboard.readFloat();
x2 = Keyboard.readFloat();
y2 = Keyboard.readFloat();
e = Distance.euclidean(xl, y1, x2, y2);
m = Distance.manhattan(xl, y1, x2, y2);
System.out.println(‘“Euclidean: *’+e);
System.out.println(‘‘Manhattan: *’+m) ;
by
b

D McGill

13



Methods as procedural abstractions

e A method implements an algorithm
e The steps of an algorithm might be complex ...

e ... therefore, its steps can be implemented as separate
methods.

e A method abstracts the way in which a particular step,
operation, function or algorithm works.

e Top-down software development:

— Start from a general algorithm first, and
— Develop the substeps later. Each substep can be
implemented as a separate method.

D McGill

14



Example: Newton's algorithm for sqrt

e Problem: Given a positive real number x, compute its
square root, /T

e Analysis:

— The square root of a positive real number x, is a real
number s such that s* = z

— The square root of some positive real numbers has
an infinite decimal expansion...

— ...therefore, we can compute only approximations, i.e.
compute a number s such that s? is “close enough”

to x.
— Two numbers are “close enough” if the absolute value
of the difference between them is very small, i.e.

smaller than a given tolerance factor.

D McGill

15



Example (contd.)

e Algorithm: Input: x, tolerance; Output: approx \/5

1. Start with a guess set to 1

2. While the guess is not good enough (i.e. while guess?

is not close to x with respect to the tolerance,) repeat:

(a) Improve the guess

3. Return the final guess

e So there are two main substeps:

— Determining whether two numbers are close enough
— Improving a guess

D McGill

16



Example (contd.)

e Determining if two values are “close enough” with re-
spect to a tolerance or not:

— Input: two values a and b (reals), the tolerance factor
(a positive real)

— Qutput: a boolean: true if the guess is good enough
w.r.t. the tolerance, false otherwise

1. If |a — b| < tolerance return true

2. otherwise, return false

static boolean close_enough(double a, double b,
double tolerance)

{

return (Math.abs(a-b) < tolerance);

D McGill

17



Example (contd.)

e |mproving the guess

— Input: the current guess g (a positive real), and x (a
positive real)

— Output: an improved guess (a positive real,) namely:
the average between the current guess and the ratio
of x and the current guess.

1. Return (g + <)

static double improve(double g, double x)

{
return (g + x/g)/2;

D McGill .



Example (contd.)

public class Newtons {
static double sqrt(double x, double tolerance)

{
double guess = 1.0;

while (!close_enough(guess*guess,x,tolerance))

{
guess = improve(guess, x);
¥
return guess,
¥

static boolean close_enough(double a, double b,
double tolerance)

{

return (Math.abs(a-b) < tolerance);

by
static double improve(double g, double x)

{
return (g + x/g)/2;
by

by
D McGill

19



Example (contd.)

import java.lang.Math;
public class Distance
{
static double euclidean(float x1, float yi,
float x2, float y2)

{
return Newtons.sqrt(Math.pow(x1-x2,2)
+ Math.pow(yl-y2,2),
0.001);
b

static double manhattan(float x1, float yi,
float x2, float y2)

{
return Math.abs(x1-x2)+Math.abs(y1l-y2);

D McGill

20



Static variables

e [ he attributes of a class are normal variables.

e The values of these attributes are individual to each
object in a class.

public class A {

int x;
}
public class B {
void m()
{
A u=new AQ);
A v = new AQ);
u.x = b;
V.X = -7;
// Here, u.x == 5 and v.x == -7
}
+

D McGill

21



Static variables (contd.)

e Static variables are attributes of the class, not of the
objects

e Static variables are shared between all the objects in a
class

public class A {
static 1nt x;

}
public class B {
void m()
{
A u = new AQ);
A v = new AQ);
u.x = 5;
V.X = -T;
// Here, u.x == -7 and v.x == -
}
}

D McGill

22



