The “this’ reference

public class Car {
double speed;

Car ()
{

speed = 0.0;
¥

void accelerate(double amount)

{

speed = speed + amount;

public class MyCarSimulation {
public static void main(String[] args)
{
Car mycar = new Car();
Car yourcar = new Car();
mycar.accelerate(90.0);
yourcar.accelerate(100.0);

The “this’ reference

public class Car {
double speed;
Car ()
{
this.speed = 0.0;
¥

void accelerate(double amount)

{

this.speed = this.speed + amount;

public class MyCarSimulation {
public static void main(String[] args)
{
Car mycar = new Car();
Car yourcar = new Car();
mycar.accelerate(90.0);
yourcar.accelerate(100.0);

The “this” reference and objects as
arguments

public class Car

{
double speed;
Car ()
{
this.speed = 0.0;
¥
void accelerate(double amount)
{
this.speed = this.speed + amount;
¥

boolean faster_than(Car other_car)

{

return this.speed > other_car.speed,;

The “this” reference and objects as

arguments

public class MyCarSimulation {
public static void main(Stringl[] args)

¥

{

¥

Car mycar = new Car();

Car yourcar = new Car();
mycar .accelerate(90.0);
yourcar.accelerate(100.0);

if (mycar.faster_than(yourcar)) {
System.out.println(“I\’m faster than you’’);

t
else {

System.out.println(‘“You are faster than me’’)

}

The “this” reference and objects as
arguments

public class Car

{
double speed;

Car ()
{

speed = 0.0;
¥

void accelerate(double amount)

{
speed = speed + amount;
¥

boolean faster_than(Car other_car)

{

return speed > other_car.speed;

The “this’ reference

public class K
{

int n;

void p(int n)

{
this.n = n; // Use this. to distinguish
+ // the n’s
void q(Q)
{
int n = 5;
this.n = n;
/] ...
}
void r()
{
n=n%2; // Same as this.n=this.n*2;
+

Aristotle

Silogisms:

— If every city has a mayor, and Edinburgh is a city,
then Edinburgh has a mayor.

— If every car has an engine, and this is a car, then
this has an engine.

— If every A has a B, and x is an A, then x has a B.

In OOP:

— If every object of type A has an attribute of type B
and x is an A object then x has an attribute of type
B.

— If a class A has an attribute of class B, and x is an
instance of A, then x has an attribute of class B.

Objects and Aggregation

Objects are data with structure: objects have attributes.

We think of attributes as characteristics of objects in a
class.

The relation between an object and its attributes can
be seen as a “has a" relationship.

Aggregation is the composition of objects in different
parts or aggregates (the attributes.)

Objects and Aggregation

Aggregation is given by the “has a" relationship.

public class A {

B u;
/] ...
I
public class C {
void m()
{

A x = new AQ);
XU ...

Objects and Aggregation

public class Mayor {

/] ...

b
public class City {
Mayor mayor;

/] ...

by

public class Something {
void p(Q)
{

City edinburgh = new City();
edinburgh.mayor = new Mayor();

10

Objects and Aggregation

public class Engine {

/] ...

b
public class Car {

Engine engine;

/] ...

by

public class Something {
void p(Q)
{

Car mycar = new Car();
mycar .engine = new Engine();

11

Example

public class Engine

{
private boolean on;
private double rpm;

public Engine()
{
on = false;
rpm = 0.0;
¥
public void turn_on()
{
on = true,;
rpm = 50.0;
¥

public void accelerate()

{
rpm = rpm + 10.0;

public void decelerate()
{
rpm = rpm - 10.0;
¥
public double get_rpm()

{

return rpm;

13

Example (contd.)

public class Car

{
private Engine engine;
private double speed;

public Car()

{
engine = new Engine();
speed = 0.0;
Iy
public void turn_on()
{
engine.turn_on() ;
by
public void acelerate()
{
engine.acelerate();
speed = speed + 10 * engine.get_rpm();
by

14

Mutual reference
public class BankAccount
{
private float balance;
private Person owner;

public BankAccount(Person owner)
{

this.owner = owner;

balance = 0.0;

by
public void deposit(float amount)

{

balance = balance + amount;

}

public void withdraw(float amount)
{
if (amount <= balance)
balance = balance - amount;
+
public float balance() { return balance; }
public Person owner() { return owner; }

15

Mutual reference

public class Person
{
private String name;
private int age;
private BankAccount account;

public Person(String name, int age)
{

this.name = name;

this.age = age;

account = null;

}

public void open_account(BankAccount a)

{

account = a;

}
public void open_account ()
{
account = new BankAccount(this);
t

// Continues below. ..

16

public String name()
{

return name;

¥
public BankAccount account ()

{

return account;

17

Mutual reference (contd.)

public class Banking

{

public static void main(Stringl[] args)

{
Person alice = new Person(‘‘Alice’’, 30);
BankAccount a = new BankAccount(alice);
alice.open_account(a);

Person bob = new Person(‘‘Bob’’, 29);
bob . open_account () ;

BankAccount b = bob.account();
b.deposit(300.0);

alice.account () .deposit (200.0f);
System.out.println(b.balance());

System.out.println(alice.account().balance());
System.out.println(a.balance());

18

main frame

alice

main frame

alice

a

-
name "Alice"
account null

\
Person
-
name [FATice™
account
_
BankAccount

balance 0.0
owner —_

Mutual reference

Person

19

main frame

alice

a

bob

Person
name [FATice™
age 30
account
BankAccount
balance 0.0
owner
Person
name "Bob"
age 29
account \
)
BankAccount /
balance 0.0
owner —

20

Mutual reference

public class Person

{
private String name;
private int age;
private Person spouse;

public Person(String name, int age)
{

this.name = name;

this.age = age;

this.spouse = null;

}

public void marry(Person someone)
{
this.spouse = someone;
someone.spouse = this;
by
public String name() { return name; }
public Person spouse() { return spouse; }

21

Mutual reference (contd.)

public class Marriage

{

public static void main(Stringl[] args)

{
Person a = new Person(‘“‘Alice’’, 30);
Person b = new Person(‘‘Bob”’, 29);
a.marry(b) ;
System.out.println(a.name());
System.out.println(a.spouse() .name());
System.out.println(b.name()) ;
System.out.println(b.spouse() .name()) ;

22

