The meaning of “to be” in computer
programming

e Aliases,
e Shared references,
e Pointer Equality, and

e Structural Equality

D McGill



D McGill



Is, I1Is a ...

"What the meaning of the word ‘is" is..." - Bill Clinton
“To be or not to be..." - Hamlet (William Shakespeare)

If every A has a B and x is an A then x has a B -
(Aristotlean silogism)

(If every city has a mayor, and Edinburgh is a city, then
Edinburgh has a mayor)

e Being something

e Being a kind of something

e Being the same as something
e Being equal to something else

e Sameness vs equality

D McGill



Being something

e Variables and values

o If we execute:
X = 5;
e then the value of x is 5.

e Strictly speaking x is not 5; x is a memory location.

e So while we would informally read x==5 as "x is 5", the
actual meanning is the value of x is 5.

e Hence, after executing

X = b;
y = 95;

and both x and y have the same value, but they are not
the same variable.

D McGill




Variables and values

e For primitive data types (int, boolean, float, String,
etc.)

X =V;

means copy the value of y in the memory location of x;

e So
int x, V;
x = 4;
y = X,

means that both x and y have value 4, but they have

a separate identity because each of them is a different
memory location...

D McGill



Variables and values

e So the value of y is the same as the value of x, but y
is not the same as x.

e .. which implies that their values are independent:

int x, V;

x = 4;

y = X,

X++

// x ==5 and y ==

e Variables can be changed over time by assignment.

e If x and y are two variables of a primitive data type, we
say that they are equal if their values are the same.

e \We can test for whether the values of two variables are
the same using the == operator.

D McGill



Being of some kind

e The “is a" relationship between an object (or instance)
and its class

e So if we have a class

class A {

//. ..
¥

e and in some client code we have

A x;
x = new AQ);

e Then xisan A
e The variable x is of type A
e The value of x is an object of type A

e The object referred to by x is a kind of A.

D McGill



Being the “same” as something

e Suppose we have

Ax, v,
x = new AQ);
y = new AQ);

e Both variables x and y are A's

e .. but the objects they refer to are different, individual,
and independent A's.

D McGill



Example:

class Employee

{
String name;
float salary;
Employee(String name, float salary)
{
this.name = name;
this.salary = salary;
by
String name() { return name; }
float salary() { return salary; }
void raise_salary(float percentage)
{
salary = salary * (1 + percentage/100.0f);
by
b

D McGill



Example (contd.)

public class Test
{
public static void main(Stringl[] args)
{
Employee el = new Employee(‘‘Adam Smith’’, 80000
Employee e2 = new Employee(‘‘John Locke’’, 50000
el.raise_salary(10f);
System.out.println(e2.salary());

D McGill

10



Example (contd.)

main frame

Employee
el name | Adam Smith
e2 — salary | 80000.0f
Employee
name | John Locke
salary ]50000.0f
main frame Employee
el name | Adam Smith
e2 —— salary | 88000.0f

Employee

name | John Locke
salary 50000.0f

D McGill

11



Alias

e A variable is an alias of another variable if they both
point to the same object.

Ax, v;
x = new AQ);
y = X

e In this case x and y are the "same’.

e More precisely, the values of x and y are the same
reference (pointer,) and therefore they refer to the same
object.

D McGill

12



Example (contd.)

public class Test
{
public static void main(Stringl[] args)
{
Employee el = new Employee(‘‘Adam Smith’’, 80000
Employee e2 = el;
el.raise_salary(10f);
System.out.println(e2.salary());

D McGill

13



Example (contd.)

main frame

el

e2

Employee
name | Adam Smith
salary | 88000.0f

D McGill

14



e Compare Test with

int x1, x2;

x1l = 6;
x2 = x1;
x1l = x1 * 3;

Aliases

e |f two variables are aliases, whatever one does to either
of them, affects the other, because they refer to the

same object.

D McGill

15



Shared references

public class BankAccount
{
private float balance;
public BankAccount(float b) { balance = b; }
public void deposit(float amount)
{

balance = balance + amount;

¥

public void withdraw(float amount)
{
if (balance >= amount)
balance = balance - amount;

}

public float balance() { return balance; }

D McGill

16



Shared references

public class Person
{
private String name;
private BankAccount account;
public Person(String name) { this.name = name; }
public void set_account(BankAccount a)

{

account = a;
b
public String name() { return name; }
public BankAccount account() { return account; }

D McGill

17



Shared references

public class BankingTest
{

public static void main(Stringl[] args)

{
Person pl = new Person(‘“‘Tom”);
Person p2 = new Person(‘‘Amanda’’);
BankAccount b = new BankAccount (10000.0f);
pl.set_account(b);
p2.set_account (b) ;

b.withdraw(500.0f) ;

BankAccount ¢ = p2.account();
float balance = c.balance();
System.out.println(balance) ;

D McGill

18



Shared references

main frame Person
ol name Tom
02 account null
b
C
balance
Person

name| Amanda
account null

D McGill 19



main frame

Person

pl

p2

b

c

balance

name Tom
account null
Person
name| Amanda
account null
BankAccount
balance 10000.0

D McGill

20



main frame

Person

pl

p2

b

c

balance

name Tom
account ~_
Person
name| Amanda
account \
BankAccount
balance 10000.0

D McGill

21



Person

main frame
ol name Tom
02 account ~_
b —_—
C Y
balance | 9500.0
Person
name| Amanda
account \
BankAccount
balance | 9500.0

D McGill

22



Shared references vs static variables

e |n the BankingTest example b is shared between pl and
p2 only, not between all Person objects

e Static variables are like aliases, but they force all objects
of the class to share the static reference, while non-static
shared references are shared between specific objects.

e Furthermore, if a variable is declares as static the object
it refers to is always shared between all objects in the
class, while a non-static shared reference might become
“unshared".

D McGill

23



Shared references vs static variables

public class BankingTest
{

public static void main(String[] args)

{
Person pl = new Person(‘“‘Tom”);
Person p2 = new Person(‘‘Amanda’’);
BankAccount b = new BankAccount (10000.0f) ;
pl.set_account(b);
p2.set_account (b) ;
b.withdraw(500.0f) ;
BankAccount f = new BankAccount(5000.0f);
p2.set_account (f);
BankAccount ¢ = p2.account();
float balance = c.balance();
System.out.println(balance);

D McGill

24



Shared references vs static variables

main frame Person
pl name Tom
p2 account ~_
b _ e —
f
c
balance Person
name| Amanda
account \
BankAccount

balance 9500.0

D McGill y



Shared references vs static variables

main frame Person
pl name Tom
p2 account ~._
b —_—
f — T~
C —_—
balance | 5000.0 Person

name| Amanda
account

BankAccount

balance 9500.0
BankAccount

balance 5000.0

D McGill

26



Pointer equality
Pointer equality also called “physical” equality is equality
(sameness) of references.

The == operator is used for testing for pointer equality.

Pointer equality is used to test for sameness of objects:

A x, v;
x = new AQ);

y = X
_.then x == y is true, but in

Ax, v;
x = new AQ);
y = new AQ);

. x == y is false, even if the attributes of the objects
are the same.

Pointer equality is an equivalence between objects of the
same class only.

D McGill

27



Example

public class BankingTest
{

public static void main(String[] args)

{
Person pl = new Person(‘“‘Tom”);
Person p2 = new Person(‘‘Amanda’’);
BankAccount b = new BankAccount (10000.0f);
pl.set_account(b);
p2.set_account (b) ;

BankAccount d = pl.account();
d.withdraw(500.0£) ;
BankAccount ¢ = p2.account();
if (¢ == d)
System.out.println(““It’s a shared account”’);

D McGill

28



Being equal to something

e Structural equality: when the aggregates (parts) of two
different objects are equal

e Structural equality is only between objects of the same
class.

e Two objects are structurally equal if their attributes are
equal

e Suppose we have a class

class A {
String x, v;
A(String x, String y)
{

this.x = x;
this.y = y;

¥

D McGill

29



Being equal to something

e and there is some client with

A al = new A(“hello”, ‘“bye”’);
A a2 = new A(“hello”, ‘“bye”’);
A a3 = new A(“bonjour’, ‘bye’’);

e then al is structurally equal to a2, but a3 is not
structurally equal to either al or a2.

e |f we want to test for structural equality we must ex-
plicitely provide the code. This is usually done by writing
a method called “equal” or "equals™

D McGill

30



Structural equality

class A {
String x, v;
A(String x, String y)
{
this.x = x;
this.y = y;
}
boolean equals(A other)
{
return this.x == other.a
&& this.y == other.y;

D McGill

31



Structural equality

public class Test

{
public static void main(Stringl[] args)
{
A a1l = new A("hello", "bye");
A a2 = new A("hello", "bye"):
A a3 = new A("bonjour", "bye");
if (al.equals(a2))
System.out.println(‘‘al is equal to a2’’);
if (a2.equals(a3))
System.out.println(‘a2 is equal to a3’);
if (al == a2)
System.out.println(‘‘al is the same as s2”’);

D McGill

32



Structural equality vs pointer equality

e Note that

— If two objects are the same (equal by pointer equality)
then they are (structurally) equal, ...
This is, x == y implies that x.equals(y) must
evaluate to true.

— ...but if two objects are structurally equal, they may
not be physically the same.
This is, it may be the case that x.equals(y) eval-
uates to true, but x == y may be false.

D McGill

33



Example

public class BankAccount {
private float balance;
// ... same as before
public boolean equals(BankAccount other_account)

{

return this.balance == other_account.balance;

D McGill

34



Example

public class BankingTest
{

public static void main(String[] args)
{
Person pl = new Person(‘“‘Tom”);
Person p2 = new Person(‘‘Amanda’’);
BankAccount bl = new BankAccount(10500.0f);
BankAccount b2 = new BankAccount (10000.0f);
pl.set_account(bl);
p2.set_account (b2) ;
BankAccount d = pl.account();
d.withdraw(500.0f) ;
BankAccount ¢ = p2.account();
if (c.equals(d))
System.out.println(‘““They are equal accounts”

D McGill

35



Example

main frame Person
pl name Tom
p2 account ~_
b2 —_
bl ——
C
d Person
name| Amanda
account \
\
BankAccount
balance 10000.0
BankAccount
balance 10500.0
D McGill

36



main frame Person
pl name Tom
p2 account ~.
b2 \\
bl ——
C —
d ~ Person
\
name| Amanda
account \
\
BankAccount
balance 10000.0
BankAccount
balance 10000.0

D McGill



