Review

e Variables whose type is a class are references

e Alias of a variable is a different variable which refers to
the same object

o Aliases can be used to represent shared refer-
ences/shared information

e Question: When are two references (of the same type)
equivalent?

Pointer equality
Shallow
Deep

e Reference equality Structural equality {

D McGill

Review

e Two references are pointer-equal if they are aliases (i.e.
they refer to the same object)

e Two references are structurally-equal if the attributes of
the objects they refer to are equal

— Two references are shallowly-equal if the attributes
of the objects they refer to are pointer-equal

— Two references are deeply-equal it the attributes of
the objects they refer to are structurally-equal

e Copying or cloning: creating a different (i.e. not pointer-
equal) object which is structurally-equal to the original

Shallow

Deep
— A copy is shallow if it is shallowly-equal to the original

— A copy is deep if it is deeply-equal to the original

— Copy

D McGill

Passing parameters by reference

class A {
int x;

}

class B {

static void m(A u)

{

0. x++;

}

static void t(int x)

{

X++;

D McGill

Passing parameters by reference

class Test {

void p()

{
A g = new AQ);
q.x = 3;
B.m(q) ;
System.out.println(q.x);
B.t(q.x);
System.out.println(q.x);

D McGill

Garbage collection

e Each use of the keyword new creates an object that
takes up space in memory:

for (int i=0; i<10000; i++) {
A some_a = new AQ);
some_a.do_something() ;

¥

e But there is a limited amount of memory

e The JVM uses Garbage Collection as a mechanism to
manage memory

e Garbage collection consists of freeing up any unused
memory

e The Garbage collector keeps track of the number of
references (aliases) to each object. When an object has
no references to it, its memory is reclaimed and it can
be recycled.

D McGill

Garbage collection (contd.)

e When can an object have no more references to it?

e When reassigning a reference:

A x = new AQ);
= new AQ);
X = null;

>

e When a method returns (and the local reference is not
passed to another object.)

void do_something ()
{
A temp = new A();
temp.p();
/] ...
+

D McGill

Example

class Brain {
//. ..

¥
class Sheep {

String name;
int age, legs;
Brain br;
Sheep(String n)
{

name = n;

age = 0;

legs = 4;

br = new Brain();

void brain_transplant(Brain new_brain)

br = new_brain;

D McGill

Example (contd.)

public class BrainTest {
public static void main(Stringl[] args)
{
Sheep dolly = new Sheep(‘“Dolly”’);
Brain b = new Brain();
dolly.brain_transplant(b);

¥
¥

D McGill

Example (contd.)

main frame
Sheep
e A
doIIyb —— name[Dolly
\\\ age 0 Brain
legs 4
br)[
\ J
Brain
main frame
Sheep
(A
dolly — name[Dolly
b i

\ age 0 Brain
legs 4
br ys
\ / J
Brain

'SR
—

D McGill

Arrays

e An array is an indexed sequence of variables of the
same type. By indexed we mean that the variables are
consecutive in memory and each of them has an index,
with 0 being the first, 1 the second, and so on.

0O 1 2 3 4 5

e Each variable in the array is called a position, a cell or
a slot, and as any variable, it can contain a value.

e Arrays are declared as follows:
type [1 name;

e Where type is any data type (primitive or user-defined).

D McGill

10

Arrays (contd.)

e For example an array of integers called mylist which is
declared as

int[] mylist;

e In an array declaration typel[] is the type of the array,
and type is its base type. (An array of integers is not
the same as a single integer.)

e Arrays can have as base type a class.

e For example, if we have a class Mouse then an array of
mice is declared as:

Mouse[] mouse_list;

D McGill

11

Arrays (contd.)

e But declaring an array does not create the array itself,
only a reference.

e To create an array we use the new keyword.
mylist = new int[6];

e Where the variable mylist is actually a reference to the
aray itself

mylist

D McGill ;

Array access

e To access individual elements of an array we use the
indexing operator [|: If variable is a reference to an
array, and number is a positive integer, or 0, then the
position number can be accessed by

variable [number]

e For example mylist[0] refers to the first position of
mylist, mylist[1] to the second, mylist[2] to the
third, and so on.

e To write a value in the array, we can use the assignment
operator:

variable [number] = expression;

e Where expression must be of the same type as the
base type of the array.

D McGill

13

Processing arrays

e Processing arrays is a generalization of processing
strings.

e ali] isanalogousto s.charAt (i), but only for reading
the i-th, not for writing: charAt cannot be used for
modifying a string. This is: s.charAt(i) = expr; is
illegal syntax.

e Use loops to traverse an array.

e The length of an array a can be obtained by the expres-
sion a.length

e This is independent of the number of slots that hold a
value

D McGill

14

Example 1

e Finding the minimum number in an array

static double find_min(double[] a)
{
int index;
double minimum;
index = 0O;
minimum = 999999999 .9;
while (index < a.length) {
if (alindex] < minimum) A
minimum = alindex];
}
index++;
}

return minimum;

¥

D McGill

Example 2

e Returning the index where the minimum is located

static int find_min(doublel[] a)
{
int index, min_index;
double minimum;
index = 0O;
min_index = 0O;
minimum = al[0];
while (index < a.length) {
if (alindex] < minimum) A
minimum = alindex] ;
min_index = 1index;
}
1ndex++;
+

return min_index;

}

D McGill

