Review

e Arrays are a type just like any other
e _._therefore, they can be attributes of classes.

e Movie database: Movie array as an attribute.

— Finding a movie: traverse the array until a match is
found
— Adding a movie: find available spot and storing there
— Deleting a movie:
x Finding the movie and setting the cell to null
(creates fragmentation.)
x Finding the movie, replacing its reference with
the last reference in the array, resetting the last
reference to null

D McGill

Growing arrays

e An array has a finite and fixed amount of memory.

e |n some applications we don't know a priori how much
memory we need.

o C/C++ allow to grow arrays at will: big data-safety
problem.

e Java does not allow to grow arrays directly, but we can
simulate it indirectly:

e Growing arrays:

— Whenever the array of interest fills up, a new, bigger
array is created,

— ...and the values of the old array are copied (shallowly)
Into the new array.

e Or, use class ArrayList or Vector from the standard
library.

D McGill

Growing arrays

e Change algorithm for adding a movie m:

1. Find first available cell

2. If an available cell is found:

(a) Store m in that cell

3. Otherwise:

(a) Grow the array (copying contents of the old to the
new)

(b) Find the first available cell in the new array (guarran-
teed to exist.)

(c) Store m in that cell

D McGill

Growing arrays

// In class MovieDatabase
private void grow_array(int n)

{

int new_capacity = movie_list.length + n;
Movie[] new_list = new Movie[new_capacity];
int 1 = 0;
while (i < movie_list.length) {
new_list[i] = movie_list[i]; // shallow copy
i++:

}

movie_list = new_list; // Update list reference

The method is private to ensure encapsulation so that only
MovieDatabase objects can grow the movie lists.

D McGill

Growing arrays

main frame

db

\

\ MovieDatabase

movie_list —
next_available 4
number_of_movies 4

call grow_array(2)

)]

Movie
title Trainspot
5 director Danny Boyl
3
Movie
title Snatch
director Guy Ritchi
Movie
title 13 days
director Roger Dona
Movie
title Lawrence
director David Lea

D McGill

Growing arrays

main frame

db [

\

\ MovieDatabase

movie_list —
next_available 4
number_of _movies 4

grow_array_frame

n[2 w
this —]
new_capacity 6
new_list —
i 10

Movie
— title Trainspot
director Danny Boyl
—J2
—~3
Movie
title Snatch
director Guy Ritchi
Movie
title 13 days
null 10 director Roger Dona
null |1
null_|2 Movie
null |3
null |4 title Lawrence
null |5 director David Lea

D McGill

Growing arrays

main frame

db [

\

\ MovieDatabase

movie_list —
next_available 4
number_of _movies 4

grow_array_frame

n[2 w
this —
new_capacity 6
new_list —
i |1

Movie
— title Trainspot
director Danny Boyl
—J2
—~3
Movie
title Snatch
director Guy Ritchi
Movie
title 13 days
e director Roger Dona
null |1
null_|2 Movie
null |3
null |4 title Lawrence
null |5 director David Lea

D McGill

Growing arrays

main frame
db | Movie
\ — title Trainspot
director Danny Boyl
—J2
: —3
MovieDatabase _
Movie
movie_list — _
next_available 4 title Snatch
number_of movies [4 director Guy Ritchi
Movie
grow_array_frame title 13 days
“10 director Roger Dona
n[2 —1
this — null |2 Movie
new_capacity 6 w null |3
new_list —] null |4 title Lawrence
i |2 null |5 director David Lea
T McGill

Growing arrays

main frame
db | Movie
\ — title Trainspot
director Danny Boyl
—J2
_ —~3
MovieDatabase _
Movie
movie_list — _
next_available 4 title Snatch
number_of _movies 4 director Guy Ritchi
Movie
grow_array_frame title 13 days
“10 director Roger Dona
n[2 —1
this — — :
: Movie
new_capacity 6 w null |3
new_list —] null |4 title Lawrence
i | 3 null |5 director David Lea
T McGill

Growing arrays

main frame

db [

\ MovieDatabase

movie_list —
next_available 4
number_of _movies 4

grow_array_frame

n[2 w
this —]
new_capacity 6
new_list —
i | 4

Movie
— title Trainspot
director Danny Boyl
—J2
—~3
Movie
title Snatch
director Guy Ritchi
Movie
title 13 days
“10 director Roger Dona
—11
— Movie
null |4 title Lawrence
null |5 director David Lea

D McGill

10

Growing arrays

main frame

db [

\ MovieDatabase

movie_list —
next_available 4
number_of _movies 4
grow_array_frame
ny| 2
this —
new_capacity 6
new_list —
i | 4

Movie
— title Trainspot
director Danny Boyl
—J2
—~3
Movie
title Snatch
director Guy Ritchi
Movie
title 13 days
“10 director Roger Dona
—11
— Movie
null |4 title Lawrence
null |5 director David Lea

D McGill

11

Growing arrays

main frame
db | Movie
\ title Trainspot
director Danny Boyl
\ MovieDatabase _
Movie
movie_list — _
next_available 4 title Snatch
number_of movies [4 director Guy Ritchi
Movie
grow_array_frame title 13 days
“10 director Roger Dona
n[2 —1
this — — :
: Movie
new_capacity 6 w —
new_list —] null |4 title Lawrence
i | 4 null |5 director David Lea
T McGill

12

main frame

db [

\

\ MovieDatabase

movie_list
next_available
number_of_movies

N

N

Growing arrays

Movie
title Trainspot
director Danny Boyl
Movie
title Snatch
director Guy Ritchi
Movie
title 13 days
“10 director Roger Dona
—11
— Movie
null |4 title Lawrence
null |5 director David Lea

D McGill

13

Growing arrays

// Version 1: explicit search for available slot
public void add_movie(Movie m)
{
// Find available slot
int index = 0;
while (index < movie_list.length
&& movie_list[index] != null) {
index++;
¥
// If available slot found, store it
if (index < movie_list.length) {
movie_list[index] = m;
by
// Otherwise
else {
int 1 = movie_list.length;
grow_array ((int) (1 * 0.10));
movie_list[1l] = m;

¥

number_of_movies++;

¥

D McGill

14

Growing arrays

// Version 2: Optimized (with non-fragmented array
public void add_movie(Movie m)
{
// If available slot found, store it
if (next_available < movie_list.length) {
movie_list[next_available] = m;
by
// Otherwise
else {
int 1 = movie_list.length,;
grow_array((int) (1 * 0.10));
movie_list[1l] = m;
¥

next_availlable++;

D McGill

15

The Vector and ArrayList classes

e Two classes which encapsulate growing arrays

e The two provide essentially the same functionality, but
have a slightly different underlying implementation.

e \ector has methods

void setElementAt(Object o, int index)
Object elementAt(int index)

int size()

boolean contains(Object o)

int index_of(Object o)

// ... etc

e ArrayList has methods

Object get(int index)

void set(int index, Object o)
void add(Object o)

int size()

// ... etc

D McGill

16

Sorting

e (Classical problem in Computer Science

e Problem: Given an array of objects, sort the array by
some key.

e For example: Sort an array of students by name, or sort
an array of products by price.

e Solution for small arrays using only conditionals is not
scalable.

D McGill

17

Sorting

e Analysis:

— Objects:
* An array of objects
— Relationships:
* Each object has a key (and maybe other attributes.)
x For example, if the objects are of class Student,
the key can be the name, to sort by name, or the
id, to sort by id.
x Each pair of keys can be compared: there is a
(total) order relation between the keys.
— Input: the array
— Output: the array, or a copy, where the objects are
placed in order (ascending) with respect the the key
of interest.

e Small variation of the problem: sort an array of numbers:
the order relation between keys is simply <=.

D McGill

18

Sorting algorithms

e [nsertion sort
e Selection sort
e Bubble sort
e Heap sort

e Merge sort

e Quick sort

e Bucket sort
e Counting sort
e Radix sort

e Sorting networks

D McGill

19

Insertion sort

e Notation (not Javal): ali..j] is the part of the array
from the i-th index to the j-th index.

e |dea: sorting a set of cards can be done by inserting a
card in the subset of the cards which are already sorted.

012 j
k
NG J
Y
al ready sorted
012]
alb k
G) key | k
‘\/’ a<=k<b

al ready sorted

D McGill

20

Insertion sort

0 12 j
alk |b
N
~_/
_) key| k
‘\/’*

al ready sorted a<=k<b

012 jj+1
akb P

\§ J
V

al ready sorted

D McGill

e Example:

Insertion sort

D McGill

22

Insertion sort

e Algorithm:

— Input: an array of numbers a

1. If al1]<al[0] swap them.
2. Insert a[2] into a[0..1]
3. Insert al[3] into a[0..2]

4. Insert a[4] into a[0..3]

6. Insert a[length of a-1] into a[0. .length of a-2]

D McGill

23

Insertion sort

e Algorithm refined:

1. For each j from 1 to the length of a-1

(a) Insert alj] into the sorted subarray a[0..j-1]
e Algorithm refined: (Full algorithm)

1. For each j from 1 to the length of a-1

(a) Set key to alj]
(b) Setitoj - 1
(c) While 1 >= 0 and a[i] > key do
i. Set ali+1] to ali]
ii. Decrement i by 1
(d) Set a[i+1] to key

D McGill

24

Insertion sort

e Implementation

void insertion_sort(int[] a)

{
int 1, j, key;
for (j = 1; j < a.length; j++) {
key = aljl;
i=3-1;
while (i >= 0 && al[i] > key) {
ali+1] = alil;
1--;
+
ali+l] = key;
+
+

B McGill y

Selection sort

012 J i
k m
/I\ m is the min of
the unsorted part
NG A J
\ Y
already sorted unsorted
012] i
m k
NG A J
N Y
al ready sorted unsorted
012 Jj+1
m| h
Y Y
al ready sorted unsorted
T McGill

26

Selection sort

e |dea:

. Look for the minimum mO in a[l.length a-1].

- Swap the minimum and a[0].

Look for the minimum m1 in a[2..length a-1]

- Swap m1 with a[l]

Look for the minimum m2 in a[3..length a-1]

- Swap m2 with a[2]

Look for the minimum m3 in a[4..length a-1]

. Swap m3 with a[3]

9. ...

D McGill

27

Selection sort

e Algorithm

1. For each j from 0 to length a - 2 do

(a) Let min_index to be the index of the minimum in
alj+1. length a-1]
(b) Swap a[min_index| and a[j]

e Algorithm refined

1. For each j from 0 to length a - 2 do

(a) Let minimum be alj]
(b) Set min_index to |
(c) Foreach i from j+1 to the length a - 1 do
i. If a[i] < minimum then
A. Set minimum to alil
B. Set min_index to i
(d) Swap a[min_index| and alj]

D McGill

28

Selection sort

e |Implementation

void selection_sort(int[] a)
{
int minimum, min_index, temp;
for (int j = 0; j <= a.length - 2; j++) {
minimum = al[j];
min_index = j;
for (int i = j + 1; i <= a.length - 1; i++) {
if (ali] < minimum) {
minimum = ali];
min_index = 1;
ks
I
temp = alj]l;
alj] = almin_index];
a[min_index] = temp;

D McGill

29

