Review

e Sorting arrays of objects:

— Objects must have a key attribute
— Keys must be comparable (their class must provide a

compareTo method)

e Multi-dimensional arrays

e Memoization: using arrays to optimize recursive meth-
ods by keeping track of previously computed solutions.

D McGill 1



Object oriented Programming

e The execution of an OO program consists of

— Creation of objects
— Interaction between objects (message-passing)

e Defining features of an OO language:

— Class definitions (describing the types of objects and
their structure,)

— Objects made up of attributes and methods (as given
by the object’s class,)

— Object instantiation (creation,)

— Message-passing (invoking methods,)

— Encapsulation (objects as abstract units, hiding,)

— Inheritance,

— Polymorphism

D McGill



Inheritance

e Being of some kind

T McGill



Inheritance

e Aristotle’s silogism describing aggregation (structure of
objects)

— If every A has a B and x is an A then x has a B
* (e.g. If every dog has a tail and Grommit is a dog,
then Grommit has a tail)
— If every A can do an action P and x is an A then
x can do an action P
x (e.g. if every dog can bark, and Grommit is a dog,
then Grommit can bark)

class Dog {
Tall t;
void bark() { ... }
b
// Somewhere else. ..
Dog grommit = new Dog() ;
grommit.bark() ;
. grommit.t ...

D McGill 4



Inheritance

e Avristotle’s silogisms describing inheritance

— if every Ais a B and x is an A then x is a B
* (e.g. if every labrador is a dog and Grommit is a
labrador then Grommit is a dog)
— if every A is a B and every B has a C then every A
has a C
* (e.g. if every dog has a tail and every labrador is a
dog then every labrador has a tail)

D McGill



Inheritance

e Two "kinds" of “is-a" relationship:

— Between an individual (object) and its class (x is of
type A, e.g. Tokyo is a City)

— Between two classes (every A is a B, e.g. every dog
is a mammal.)

e In the first silogism, when we say 'x is an A", x is an
individual, we are talking about a specific x who is a
kind of A, in other words, x is an object, and A is a
class of objects, so x is an instance of class A.

e |n the second silogism, when we say “every A is a B',
we are talking about all A's, all individuals who are A's.
This is equivalent to saying:

— “for all individuals x, if x is an A, then x is also a B.”
— ... or, for all objects x, if x is of type A, x is also of
type B."

D McGill 6



Inheritance

e The first kind represents instantiation
e The second, represents inheritance

e Representing the two kinds of “is-a” in Java:

— Between an individual (object) and its class (x is of
type A, e.g. Tokyo is a City)
A x = new AQ);
City tokyo = new City();
— Between two classes (every A is a B, e.g. every dog
is a mammal.)

class B{ ... }
class A extends B { ... }
class Labrador extends Dog { ... }

e \We say that A is a subclass of B, or A is derived from
B, or B is a superclass of A, or B is a parent of A.

D McGill



f

A

represents:
"every A is a B"
(inheritance)

For example:

Dog

i

Inheritance

Dog

<>————Tall

Labrador

represents:
"every A has a B"
(aggregation)

D McGill



Inheritance

e The silogism “if every A is a B and every B has a C
then every A has a C’, means that all the attributes
that B has, are also attributes of A. A may have other
attributes as well which B doesn’t. A is more specific or
specialized than B.

class C{ ... }
class B {

C v;

/] ...
}

class A extends B {
// Has an implicit C v;
/]

}

D McGill



Inheritance

class Engine {

/] ...
¥

class Car A
Engine e;
/] ...

}

class RacingCar extends Car {
// It implicitly has Engine e;
/] ...

¥

// In some client
RacingCar r = new RacingCar();

Engine e = r.e; // e is inherited from Car

D McGill

10



Inheritance

Car <> £ Engine

RacingCar

is the same as

Car (< s Engine

RacingCar (<>

D McGill



Inheritance

e Inheritance also represents specialization

class Engine {
/] ...
+
class Car {
Engine e;
Car() { e = new Engine(); }
/] ...
+

class RacingCar extends Car {
Aerofoil a;
TurboCharger t;

¥

// In some client

RacingCar r = new RacingCar();

Engine el = r.e; // e is inherited from Car
TurboCharger tl1 = r.t;

Car ¢ = new Car();

Engine e2 = c.e;

TurboCharger t2 = c.t; // Error

D McGill

12



Inheritance

e Inheritance serves as a tool for reusability:

e \We can write

class RacingCar extends Car {
Aerofoil a;
TurboCharger t;

¥

instead of

class RacingCar {
Engine e;
Aerofoil a;
TurboCharger t;

¥

D McGill

13



Inheritance

e Methods are inherited too:

class Engine {
void start() { ... }
}
class Car {
Engine e;
double speed;
Car() { e = new Engine(); speed = 0.0; }
void turn_on()
{
e.start();
}
+

class RacingCar extends Car {
Aerofoil a;
TurboCharger t;
by
// In some client
RacingCar r = new RacingCar();
r.turn_on(); // Inherited from Car

D McGill



Inheritance

e Classes can have many subclasses

class Sedan extends Car {
Trunk t;
PassengerSeats[] ps;

}

// In some client

Sedan s = new Sedan();

s.turn_on() ;

Car

RacingCar Sedan

D McGill



Inheritance

e Attributes in a class are shared between its subclasses
(but not the values of those attributes!)

Car

RacingCar

Sedan

)

TurboCharger

Aerofoll

Engine

Trunk

D McGill

16



Inheritance

e |nheritance is a transitive relation: if every A is a B and
every B is a C, then every Aisa C

class F1Car extends RacingCar {
opeedControlSystem scs;

¥

e instead of

class FiCar {
Engine e;
Aerofoil a;
TurboCharger t;
SpeedControlSystem scs;

¥

D McGill

17



Inheritance

e Class hierarchy:

Car

RacingCar

JA)

Engine

Sedan

F1Car

Cart

Nascar

D McGill

18



Inheritance

e A closer look at inheritance as specialization

class Animal {

boolean tired, hungry;

void eat()

{
get_food () ;
hungry = false;

¥

void get_food() { ... }

void sleep()

{
System.out.println(‘“‘zzz...”’);
tired = false;

¥

by

D McGill

19



Inheritance

class Dog extends Animal {
Legs[] 1;
Tall t;
void run()
{
tired = true; // From class Animal
hungry = true;
b
void bark()
{
System.out.println(‘“Woof, Woof!”’);
b
b

class Labrador extends Dog {
void say_hello()
{
t.wiggle(); // t from class Dog
¥
¥

D McGill

20



Inheritance

public class ZooTest {
public static void main(String[] args)
{
Labrador 1 = new Labrador();

1.say_hello(); // Will call 1.t.wiggle(Q);
1.run();

if (1.hungry)

l.eat(); // from class Animal
if (1.tired)

1.sleep();

D McGill

21



Inheritance

e |nheritance represents also a spectrum of possibilities or
alternatives, given by the subclasses of a class

e |f every Bisan A and every Cis an A, and nothing else
is an A then an A is eithera Bora C

— (e.g. if every racing car is a car, and every sedan is a
car, and nothing else is a car, then a car is either a
racing car or a sedan.)

class Animal { ... }

class Dog extends Animal { ... }
class Cat extends Animal { ... }
class Bird extends Animal { ... }

// In some client

Animal al = new Dog();

Animal a2 = new Cat();

Animal a3 = new Bird();

Dog d = new Animal(); // Wrong!

D McGill

22



Inheritance

e (lasses as sets of objects:

— "is-a’ between an object and a class is the same as €
— “is-a" between two classes is the same as C

o Llet A B, C be sets

— fAC Bandxz € Athenx € B

— fACBand BC(Cthen ACB

— If BC A and C C A, and there is no other set D
such that D C Athen A=BUC

D McGill y



Inheritance

e A bank account is either a savings account or a checking
account, then a savings account is a kind of bank
account, and a checking account is a kind of bank
account.

BankAccount
+balance: float

+deposit(amount:float): void
+withdraw(amount:float): void
+balance(): float

SavingsAccount CheckingAccount
+interest_rate: float +fee: float
+apply_interest(): void +deduct_fees(): void

D McGill

24



Inheritance

class BankAccount {
private float balance;
public BankAccount(float initial_balance)

{

balance = 1nitial_balance;

¥
public void deposit(float amount)

{

balance = balance + amount;

¥

public void withdraw(float amount)

{

balance = balance - amount;

}

public float balance() { return balance; }

D McGill

25



Inheritance

class SavingsAccount extends BankAccount {
private float interest_rate;
public SavingsAccount(float initial_balance,
float rate)
{
super (initial_balance); // Calls superclass
// constructor
interest_rate = rate;

b
public void apply_interest()

{
balance = balance
+ balance * interest_rate/100.0;

D McGill

26



Inheritance

class CheckingAccount extends BankAccount {
private float fee;
public SavingsAccount(float initial_balance,
float fee)
{
super (initial_balance) ;
this.fee fee;

+
public void deduct_fee()

{

balance = balance - fee;

D McGill

27



Overriding methods

BankAccount

+balance: float

+deposit(amount:float): void
+withdraw(amount:float): void
+balance(): float

SavingsAccount CheckingAccount
+interest_rate: float +fee: float
+apply_interest(): void +deduct_fees(): void

LimitedSavingsAccount
+daily_limit: float
+withdraw(amount:float): void

D McGill

28



Overriding methods

class LimitedSavingsAccount
extends SavingsAccount {
private float daily_limit;
public LimitedAccount(float initial_balance,
float rate, float limit)
{
super (initial_balance, rate);
daily_limit = limit;

¥
public void withdraw(float amount)
{
if (amount < daily_limit)
balance = balance - amount;
b

D McGill

29



