Review

e Inheritance:

— Represents the “is-a" relationship between classes
— Represents specialization of classes (subsets)
— Represents a way of describing alternatives (alterna-

tive subclasses)
— Is a mechanism for reusability

D McGill

Inheritance

e Whenever we have a situation which states that “every
A is a B", we model this as

class A extends B { ... }

e All attributes and methods from the parent class (or
super class) B are “inherited” by the subclass (or derived

class) A.

e Class A can have (and usually does have) additional
attributes and methods.

represents:
"every A is a B"
(inheritance)

B

f

A

represents:
"every A has a B"
(aggregation)

D McGill

Inheritance

class C{ ... }
class D { ... }
class E{ ... }
class B {

C vl, v2;

D u;

void m() { ... %}
}
class A extends B {

E x;

Cy;

void p() { ... }
void s() { ... %}

¥

D McGill

Inheritance

// In some client
A obj = new AQ);

obj.pQO);
obj.m();
// We can refer to ... obj.x ... obj.y ...
// ... obj.u ... obj.vl ... obj.v2 ...
some frame
A
Obj — ()
vl
v2 B
u
. .X)
y

D McGill

e A method in a subclass can access the attributes and

Inheritance

methods of its super class.

class C { ...
class D { ...
class E { ...

¥
¥
¥

class B {

C vl, v2;

D u;

voidm() { ... vl ... v2 ... u ... m(Q)
+
class A extends B {

E x;

Cy;

void p()

{

X ooy oo pO oo VDL
.v2 ..oou ... ()

+
void s() { ... %}
+

D McGill

Inheritance

class M extends A {
E z;
D r;
void q(O) { ... }
}
// Somewhere else
M obj2 = new MQ);

some frame
M
obj [()
vl
v2 B
u
X A
y
Z
r M
_ J

D McGill

Shadowing variables

e An attribute or instance variable can be redefined in a
subclass. In this case we say that the variable in the
subclass shadows the variable in the parent class.

class M extends A {

E z;
D r, x;
void q() { ... }
t
some frame
M
Obj — 4)
vl
v2 B
u
X A
y
Z
r M
X
_ J

D McGill

Accessing variables from the super
class

e The super reference is used to access an attribute or
method in a parent class.

class M extends A {

E z;
D r, x;
void q()
{
. this.x ... super.x ...
Iy

D McGill

Overriding methods

e A method can be redefined in a subclass. This is called
overriding the method.

class M extends A {
E z;
D r, x;
void q()
{

... this.x ... super.x ...
¥
void p()
{

}

D McGill

Accessing a method or attribute

e When we try to access a method or attribute of an
object, it is looked up by the Java runtime system in
the class of the object first. If it is not found there, it is
looked up in the parent class. If it is not found there, it
is looked up in the grand-parent, etc...

M obj3 = M(Q);

obj3.q(0); // From
obj3.m(); // From
obj3.p(); // From
obj3.s(); // From

class
class
class
class

=i v o R

e Attributes and methods declared as private cannot be
accessed directly by the subclasses, even though they
are present in the object. They can be accessed only
indirectly by public accessor methods in the class that
declared them as private.

D McGill

10

Accessing a method or attribute

class A extends B {
private E x, y;
void p() { }
void s() { }
public E get_x() { return x; }

¥

class M extends A {

E z;
D r, x;
void q()
{
. this.x ...

// instead of super.x ...

... getx() ... or ... super.get_x()
b

I

D McGill

11

Accessing a method or attribute

e An attribute or method declared as protected can be

accessed by any subclass, even if it is in a different
package.

e An attribute or method declared as final, is not inher-
ited at all, i.e. it forbids overriding.

e A class declared as final, cannot have subclasses.

D McGill

12

Multiple inheritance

Animal

Mammal

Fish

+sleep(): void

+sleep(): void

Dolphin

D McGill

13

Multiple inheritance

G

+p()

= F

+p() ZF
B C D
L .

D McGill

14

Polymorphism

e Polymorphism means "many forms.”

e Polymorphism is the characteristic of being able to assign
a different meaning or usage to something in different
contexts

e A polymorphic method is a method which can accept
more than one type of argument

e Kinds of polymorphism:

— Overloading (Ad-hoc polymorphism): redefining a
method in the same class, but with different signa-
ture (multiple methods with the same name.) Dif-
ferent code is required to handle each type of input
parameter.

— Parametric polymorphism: a method is defined once,
but when invoked, it can receive as arguments objects
from any subclass of its parameters. The same code
can handle different types of input parameters.

D McGill

15

Polymorphism

class Creature {
boolean alive;
void move()
{
System.out.println("The way I
}
}

class Human extends Creature {
void move()
{
System.out.println("Walking. ..
+
+

class Martian extends Creature {
void move()
{
System.out.println("Crawling. .
+
+

move 1s by..

l),

.n);

D McGill

16

n) .
.)

Ad-hoc Polymorphism (Overloading)

class Zoo {
void animate (Human h)

{

h.move() ;

}

void animate(Martian m)

{
m.move () ;
}
}

public class ZooTest {

public static void main(String[] args)

{
Zoo my_zoo = new Zoo();
Human joseph = new Human();
Martian ernesto = new Martian();
my_zo0o0.animate (ernesto); // Polymorphic call
my_zoo.animate(joseph); // Polymorphic call

}

by
D McGill

17

Parametric Polymorphism

class Zoo {
void animate(Creature c)
{
c.move() ;
}
}

public class ZooTest {

public static void main(String[] args)

{
Zoo my_zoo = new Zoo();
Human joseph = new Human();
Martian ernesto = new Martian();
my_zoo.animate(ernesto); // Polymorphic call
my_zoo.animate(joseph); // Polymorphic call

D McGill .

Accessing super

class Human extends Creature A
void move()
{
super .move () ;
System.out.println(‘“Walking. ..

}
¥

class Martian extends Creature A
void move()
{
super .move ()
System.out.println(““‘Crawling. .

¥
¥

n) .
.)

D McGill

19

Casting and instanceof

e (Casting is like putting a special lens on an object
e A casting expression is of the form
(type) expr

where type is any type (primitive or user-defined) and expr
Is an expression which evaluates to an object reference
whose type is compatible with type.

e Not all casts are possible

(int) “‘Hello”’
(Engine) joseph

D McGill

20

Casting

e If a variable is a reference of type A, it can be assigned
any object whose type is a subclass of B.

Human greg = new Human();
Creature c = greg;

e But a reference of type B cannot be assigned directly
reference of type A, if B is a subclass of A (because A
has less attributes than required by B):

Creature d = new Creature();
Martian m = d;

e __however, if we know that a reference x of type A
points to an object of type B (and B is a subclass of A))
then we can force to see x as being of type B by using
a casting expression:

Creature e = new Martian();
Martian f = (Martian)e;

D McGill

21

Checking the type of a reference

e To find out whether a reference r is an instance of a
particular class C we use the boolean expression:

r instanceof C
e This is normally used whenever we do casting:

class Human extends Creature {
void move ()

{
System.out.println(‘“Walking...”’);

¥
void jump()
{
System.out.println("Up and down");

D McGill

22

Checking the type of a reference

class Martian extends Creature {
void move ()

{
System.out.println("Crawling...");
b
void hop()
{
System.out.println("Down and to the left");
I

¥

class Zoo {
void move(Creature c)
{
if (¢ instanceof Human)
((Human)c) . jump () ;
else if (c instanceof Martian)
((Martian)c) .hop();
c.move() ;

}

¥
D McGill

23

