Polymorphism

e Polymorphism is a tool that permits abstraction and
reusability

e A polymorphic method is a method which can receive
as input any object whose class is a subclass of the
methods's parameter.

e Ad-hoc polymorphism is overloading (providing separate
methods for each expected parameter type)

e Parametric polymorphism relies on dynamic-dispatching.
Dynamic-dispatching is the process by which the run-
time system directs the message of an object to the
appropriate subclass.

e A dynamic-dispatch can be decided only at run-time,
not at compile-time, because the compiler cannot know
which is the actual object passed as argument to a
polymorphic method. Furthermore, the same method
might be called with different objects from different
classes during the execution of the program.

D McGill

Polymorphism

class Creature {
boolean alive;
void move()
{
System.out.println("The way I
}
}

class Human extends Creature {
void move()
{
System.out.println("Walking. ..
+
+

class Martian extends Creature {
void move()
{
System.out.println("Crawling. .
+
+

move 1s by..

l),

.n);

D McGill

n) .
.)

Ad-hoc Polymorphism (Overloading)

class Penguin extends Creature {
void stumble ()
{
System.out.println(‘“‘Ouch’);
¥
¥

class Zoo {
void animate (Human h)

{
h.move() ;
b
void animate(Martian m)
{
m.move() ;
+
void animate(Penguin p)
{
p.move() ;
+

¥
D McGill

Ad-hoc Polymorphism (Overloading)

public class ZooTest {
public static void main(Stringl[] args)
{
Zoo my_zoo = new Zoo();
Human joseph = new Human();
Martian ernesto = new Martian();
Penguin paco = new Penguin();

my_zo00.animate (ernesto) ;

// calls move from Martian
my_zoo.animate (joseph) ;

// calls move from Human
my_z00.animate (paco) ;

// calls move from Creature

D McGill

Parametric Polymorphism

class Zoo {
void animate(Creature c)
{
c.move(); // Dynamic-dispatch
// move *must* be defined in class Creature
}
}

public class ZooTest {
public static void main(Stringl[] args)
{
Zoo my_zoo = new Zoo();
Human joseph = new Human();
Martian ernesto = new Martian();
Penguin paco = new Penguin();

my_zo00.animate (ernesto) ;
my_zoo.animate (joseph) ;
my_zo0.animate (paco) ;

}

by
D McGill

Accessing super

class Human extends Creature {
void move()
{
super .move () ;
System.out.println(“Walking. ..

¥
¥

class Martian extends Creature {
void move()
{
super .move ()
System.out.println(‘“‘Crawling. .

¥
¥

class Penguin extends Creature {
void stumble()
{
super .move () ;
System.out.println(‘“‘Ouch’);

}

n) .
.)

¥
D McGill

Casting and instanceof

e Casting is like putting a special lens on an object, in
order to observe the object as if it was of a different

type.
e A casting expression is of the form
(type) expr

where type is any type (primitive or user-defined) and expr
Is an expression which evaluates to an object reference
whose type is compatible with type.

e Not all casts are possible

(int) ‘“‘Hello”’
(Engine) joseph

D McGill

Casting

e |f a variable is a reference of type A, it can be assigned
any object whose type is a subclass of B.

Human greg = new Human();
Creature ¢ = greg;

e But a reference of type B cannot be assigned directly
reference of type A, if B is a subclass of A (because A
has less attributes than required by B):

Creature d = new Creature();
Martian m = d; // Wrong!

D McGill

Casting

class Creature {
boolean alive;

/] ...
¥

class Martian extends Creature {
int legs, wings;
/] ...

+

// Somewhere else. ..

Creature d = new Creature();

Martian m = d;

int n = m.legs + m.wings; // Error!

// ...because d does not have legs or wings

D McGill

Casting

class Creature {
boolean alive;
void move() { ... }
+
class Martian extends Creature {
int legs, wings;
void move() { ... }
void hop() { ... %}
}

// Somewhere else. ..
Creature d = new Creature();
Martian m = d;

m.hop(); // Error!

// ...because d cannot hop

D McGill

10

Casting

e __however, if we know that a reference x of type A
points to an object of type B (and B is a subclass of A))
then we can force to see x as being of type B by using
a casting expression:

Creature e = new Martian();

Martian f = (Martian)e;

int n = f.legs * f.wings;

((Martian)e) .hop(); // same as f.hop();

D McGill

11

Checking the type of a reference

e To find out whether a reference r is an instance of a
particular class C we use the boolean expression:

r instanceof C
e This is normally used whenever we do casting:

class Human extends Creature {
void move ()

{
System.out.println(‘“Walking...”’);

¥
void jump()
{
System.out.println("Up and down");

D McGill

12

Checking the type of a reference
class Martian extends Creature {
void move()

{
System.out.println("Crawling...");
b
void hop()
{
System.out.println("Down and to the left");
b

¥

class Zoo {
void animate(Creature c)
{
if (c instanceof Human)
((Human)c) . jump Q) ;
else if (c instanceof Martian)
((Martian)c) .hopQ);
else if (c instanceof Penguin)
((Penguin)c) .stumble() ;
c.move() ;

}
¥

D McGill

13

Narrowing and Widening casts

e Suppose class A has B as a subclass.

e Narrowing casts make a reference to a B object into an
A object

B z = new B();
Aw= (A)z; // Narrowing; Same as A w = z;

e Widening casts make a reference to an A object into a
B object

A x
By

new B(); // Narrowing
(B)x; // Widening

e Sometimes it is necessary to make an explicit narrowing
conversion if we want to force an object to behave as one
of its ancestors, for example to access some overriden
method.

D McGill

14

Narrowing and Widening casts

class FlyingMartian extends Martian {
void move ()
{
System.out.println(‘‘Gliding...”");
b
b

class ZooTest {

public static void main(String[] args)

{
FlyingMartian peng = new FlyingMartian();
peng.move() ;
((Martian)peng) .move () ;
((Creature)peng) .move () ;
((Human)peng) .move(); // Error peng is not Hum

¥
¥

D McGill

15

Object

e Object is a class in the standard Java library which is a
superclass to all.

e It contains methods

public boolean equals(Object o)
protected Object clone()
public String toString()
public Class getClass()

e A method whose argument is of type Object can receive
any object from eny class as argument. (maximum
possible polymorphism.)

e \Whenever an object appears in a String expression, the
method toString is invoked automatically

D McGill

16

Object

class Human {
String name;
public String toString()
{
return ‘“‘My name 1s ‘‘“+name;
¥
¥

class Test {
public static void main(String[] args)
{
Human h = new Human() ;
h.name = “Kelly’’;
String s = ‘“’+h;
// Same as String s = ‘““’+h.toString();

D McGill

17

Abstract classes

e A class with default behaviour:

class Creature A1
boolean alive;
void move ()
{
System.out.println(‘“‘Here we go...”");
}
}

e An abstract class: subclasses must provide implementa-
tion

abstract class Creature {
boolean alive;
abstract void move() ;

¥

D McGill

18

Abstract classes

e An abstract class is a class that has at least one
abstract method

e An abstract method is a method which is not imple-
mented (i.e. has no body) and must be overriden (i.e.
must implemented by the subclasses.)

e An abstract class is used to represent an abstract concept
which captures the common structure and behaviour of
several classes, but leaves some detail to the subclasses.

e Abstract classes force the use of parametric polymor-
phism.

D McGill

19

Abstract classes

e [here cannot be instances of abstract classes.

Creature kowe = new Creature(); // Wrong!
//because
kowe.move(); // What would be executed here?

e The abstract methods must be implemented in the
subclasses of an abstract class (unless the subclass itself
is also abstract.) This is, there is no default behaviour
for an abstract method.

D McGill

20

Abstract classes

e An abstract class can have non-abstract methods (which
usually represent the “default behaviour” of a method:)

abstract class Creature
{
boolean alive, hungry;
abstract void move();
void eat()
{
System.out.println(“‘Hmmm. .."’");
hungry = false;
+
+

D McGill

21

