
Statecharts and Class Diagram XML
A general-purpose textual modelling formalism

Glenn De Jonghe

Supervisor: Prof. Dr. Hans Vangheluwe

Faculty of Science
University of Antwerp

Antwerp, Belgium

March 1, 2014

Copyright c©2013 Glenn De Jonghe.

All rights reserved.

Abstract

Due to the exponential increase in complexity of video games, writing consistent and re-usable code for
game AI has become very hard. In previous research, a new method was presented to obtain intelligent
behaviour for Non-Playable Characters (NPCs) based on the visual modelling formalism Statecharts. In
this paper we expand on that research, creating a new formalism based on both Statecharts and the actor
model. The formalism will incorporate class diagrams to have instantiated classes as actors, which have
their behaviour described by a statechart. The modularity that comes forward has as advantage that new
models can easily be generated where one or more actors are replaced or adapted. In the case of NPCs this
results in models with similar yet sufficiently different behaviour that allows for a more interesting game-
play. The proposed state charts and class diagrams XML (SCCDXML) formalism is based on SCXML, a
formalism that describes state charts in a human-readable XML format. A compiler is developed to generate
code from SCCDXML models, followed by an example tanks game where it is shown that the formalism
can easily be used to create intelligent behaviour for computer controlled tanks. Many advantages can be
observed : not only does the layer of abstraction result in very simple but powerful designs, the obtained
code is also more stable and efficient.

1

Contents

Abstract 1

List of Figures 4

List of Code Samples 5

1 The Formalism 6

1.1 Constructs . 6

1.1.1 Statechart . 6

1.1.2 Class Diagram . 10

1.2 Concrete Syntax . 11

1.2.1 Motivation for using XML . 12

1.2.2 Class Diagram . 12

1.2.3 Statechart . 14

1.2.4 Executable Content . 17

1.2.5 Macros . 18

1.2.6 State Referencing . 18

2 Compiler 20

2.1 Architecture . 20

2.2 Runtime Platform . 22

2.2.1 Architecture . 22

2.2.2 Event Simulation . 26

2.2.3 Game Loop . 27

2.3 Code Generation . 28

2.3.1 State Linker . 29

2

2.3.2 Path Calculator . 29

2.3.3 Code Generator . 31

3 Test Framework 34

3.1 Requirements . 34

3.2 Architecture . 34

4 Example Case : Tank Wars 39

4.1 User-Controlled Tank . 40

4.2 Computer-Controlled Tank . 44

5 Conclusion and Future Work 58

Bibliography 59

3

List of Figures

1.1 Two basic states connected by a transition originating from the initial state on the left. . . 7

1.2 On the right we can see the composite state B encapsulating the two basic states C and D. . 8

1.3 A parallel state Y with two composite substates A and B. Upon initialization both inner
states K and D are active. 8

1.4 When the transition to the history state is fired, the state of A will be restored to its last
recorded state. 9

1.5 This figure illustrates the relation between classes in a class diagram and the statecharts that
describe their behaviour. 11

1.6 Illustrating the use of the conflict attribute of a state. When state A is active and event i is
cast, the attribute will decide which transition needs to be fired. 15

2.1 Class diagram illustrating the abstract data structure created from an SCCDXML model. . 21

2.2 Diagram illustrating the different simulation methods. 28

4.1 Our example game Paper Warfare where we demonstrate the usability of the SCCDXML
formalism . 40

4.2 Visual representation of Code Sample 4.1 . 42

4.3 Visual representation of Code Sample 4.2 . 44

4.4 The layered architecture used to model the tank NPC. 45

4.5 Visual representation of Code Sample 4.3 . 47

4.6 Visual representation of Code Sample 4.4 . 49

4.7 Visual representation of Code Sample 4.5 . 50

4.8 Visual representation of Code Sample 4.6 . 51

4.9 Visual representation of Code Sample 4.7 . 53

4.10 Visual representation of Code Sample 4.8 . 56

4.11 Visual representation of Code Sample 4.9 . 57

4

Code Samples

1.1 The SCCDXML variant of Figure 1.1 . 15
1.2 The SCCDXML variant of Figure 1.2 . 15
1.3 The SCCDXML variant of Figure 1.3 . 16
1.4 The SCCDXML variant of Figure 1.4 . 16
2.1 Pseudo code for RuntimeClassBase’s step() method . 23
2.2 Pseudo code for RuntimeClassBase’s microstep() method 23
2.3 Pseudo code for the processing of an association reference 25
2.4 Pseudo code for ThreadsControllerBase’s run() method 27
2.5 Pseudo code for GameControllerBase’s update() method 28
2.6 Pseudo code for calculating the Least Common Ancestor (LCA) 29
2.7 Pseudo code for PathCalculator’s visit method for StateChartTransitions 30
2.8 Pseudo code for the transition method of a composite state with outer conflict resolving . . 31
2.9 Pseudo code for the transition method of a parallel state with inner conflict resolving . . . 32
3.1 A model that tests the history functionality of a parallel node. 35
3.2 A model that tests the detection of duplicate IDs . 37
4.1 The Main component of the player-controlled tank model. 40
4.2 The Cannon component of the player-controlled tank model. 42
4.3 The Radar actor is responsible for announcing the position of any tank it notices. 45
4.4 The EnemyTracker actor is responsible for tracking the enemy’s position using the informa-

tion received from the radar. 47
4.5 The PilotStrategy actor decides which strategy the NPC should follow. 48
4.6 The AttackPlanner component is responsible for instructing the NPC when in attack mode. 50
4.7 The PathFinder translates destinations into a path of way-points. 52
4.8 The TurretSteering actor generates events for the TurretControl actuator. 54
4.9 The TurretControl actor which is responsible for executing the actions related to the turret

of the tank. 56

5

1
The Formalism

In this chapter our proposed Statecharts and Class Diagram XML (SCCDXML) formalism is described.
In the first section the semantics of the formalism are explained using a neutral visual representation. The
second section gives a detailed overview of the concrete syntax together with SCCDXML versions of the
visual examples.

1.1 Constructs

In this section the semantics of the different constructs that make up the formalism are discussed. We can
split the constructs up into two categories, namely those that make up a statechart and those that encapsulate
those statecharts into a class and ultimately into a class diagram.

1.1.1 Statechart

The statechart-constructs are based on the Statecharts formalism, first introduced by David Harel [Har87] in
1987. Statecharts is a visual modelling language that represents finite state automata with added hierarchy,
parallelism, history and broadcast communication. Harel created the formalism to be able to describe
large and reactive systems, as he believed such method wasn’t available at that time. We use the visual
representation as proposed by Harel in his original paper [Har87], but keep in mind that these can slightly
differ across different statechart editors. We end this section with a quick overview of the formal semantics.

6

Basic State

The basic state acts as the main building block of a statechart and is represented as a labelled (rounded)
rectangle. This can be seen in Figure 1.1 where two basic states are depicted. A statechart consisting solely
out of basic states, has to have exactly one default/initial state, this is represented by an incoming edge
without source node.

Figure 1.1: Two basic states connected by a transition originating from the initial state on the left.

Transition

The two states are connected by a transition originating from the initial state on the left, with a label of
the form event[guard]/action. This means that upon reception of the trigger event c, the statechart will
transition from the initial state A to the state B if and only if the guard condition P evaluates to true. Upon
firing the transition, the action will be executed which in this case is the casting of the d event. All three
parts of the label are optional and thus it is for example possible to have a transition without trigger event or
guard condition (which is called an unconditional transition) or a transition with only a guard and no action.

Composite State

Composite states add a notion of hierarchy to Statecharts, they allow to group states together into multiple
substates. The composite state is also called the XOR state because when such a state is active, exactly one
of its substates must be active. Each composite state should have exactly one initial substate and transitions
can occur at every level of the state hierarchy.

To illustrate this we look at the example in Figure 1.2. At initialization time only the state A is active. Upon
reception of the event h, the composite state B will be entered and consequently its initial substate C as
well. At this point an event k can bring the statechart in the state configuration where B and its substate D

are active, while an event f would bring the statechart back to its initial configuration where only state A is
active.

Parallel State

Besides the XOR decomposition achieved by a composite state, also AND decomposition is available in the
Statecharts formalism. These are better known as parallel states and allow for parallelism to be modelled.
Upon entering a parallel state, each substate will become active. These substates are always non-atomic
states that can in turn contain a state hierarchy.

A parallel state is represented the same way as a composite state, however its substates are depicted by
dashed rectangles expressing that they are active at the same time. We see such a state in Figure 1.3 labelled

7

Figure 1.2: On the right we can see the composite state B encapsulating the two basic states C and D.

Figure 1.3: A parallel state Y with two composite substates A and B. Upon initialization both inner states K
and D are active.

Y. Since this is the default state at the top level, this will directly be entered upon initialization. Consequently
both substates A and B will be entered, which ultimately results in both inner states K and D being active at
the same time. When the transition of K to L is triggered by the event x, state D will still remain active.

8

History State

A history state, which is depicted by a circle with the label H, adds memory to a component. Upon leaving
a composite state, a possibly present history state will first save the current state before adapting it. When
afterwards that composite state gets re-entered through the history state, the state will restore the retained
state instead of using the default state.

Figure 1.4: When the transition to the history state is fired, the state of A will be restored to its last recorded
state.

To illustrate this we see in Figure 1.4 a composite state A that has a history state and two sub-states of which
K is the default one. If an event x is received after initialization, the composite state will reside in sub-state
L (i.e., L is now active). Upon firing the transition to state M, which is enabled by the event y, the current
state of A is recorded first. When this is followed by an event z, the transition to the history state is taken
resulting in A being reactivated and thus having the saved state, where sub-state L is active, restored.

Statecharts offers two types of history. The default shallow type only saves one layer of state in a component
while the deep type saves all descendants of the component. The latter is represented by adding an ∗ to the
state label giving H∗.

Enter and Exit Hierarchy

With Statecharts it’s possible to define actions that should be executed on either entering or exiting a specific
state. When multiple layers of hierarchy are traversed on firing a transition, these actions are executed in the
intuitive way. The exit actions are executed first, from the deepest level up to the first shared parent between
the source and target states. This is then followed by executing the enter actions in the opposite direction
up to the target states.

9

Formal Semantics

Statecharts models solely define the behaviour of a system, they do not provide a definition of how to
execute or simulate the behaviour. This is where formal semantics come into play. Reliable simulation can
only be performed when the syntactic constructs discussed in the previous subsections are associated with
formal semantics. Many different semantics have spawned over the years with the most popular being UML
statechart diagrams (as specified in UML 2.0 [OMG05]), Statemate [DH96] and Rhapsody [DH04]. The
Statemate semantics were the first executable semantics for the modelling language introduced by Harel
and Naamad in 1987. In 1996 Harel and Kugler followed this up with executable semantics for object-
oriented statecharts known as the Rhapsody semantics. UML statechart diagrams are also an object version
of Statecharts, very similar to Rhapsody due to cooperation between the development teams. Our formalism
will primarily use the semantic definitions of the latter. For one this means that a transition may take time
allowing for models with either zero- or fixed-execution time. This is in contrast with Statemate where
the synchrony hypothesis holds which states that a system must react immediately to external events and
that the corresponding output must occur at the same time. This leads to another important difference. In
order for Statemate to adhere to the hypothesis it allows for events to occur simultaneously, and be acted
upon simultaneously. This is not the case for our formalism. UML and Rhapsody adhere to the concept of
run-to-completion, which means that each event is handled completely before the next event is processed.

Another noteworthy property is the order of execution of actions. While in Statemate multiple actions on
a transition are executed in parallel, our formalism will execute them sequentially. As for the priority of
conflicting transitions our formalism provides a way of specifying how this should be resolved, as explained
in subsection 1.2.3.

1.1.2 Class Diagram

The top level of a SCCDXML model resembles a UML class diagram connecting different classes using
relationships. Each class can have methods and attributes just like in UML, but on top of that our formalism
defines the behaviour of a class using a statechart. In Figure 1.5 we see the class diagram from the per-
spective of a single class ClassD. We see that the class is associated with the classes ClassE and ClassF by
named unidirectional associations and that a dashed edge with label «behaviour» is used to link the class to
a statechart.

In the traditional Statecharts formalism, when casting an event, it was obvious that the scope of an event
was local to the statechart. Now with the addition of the class diagram, different levels of scope are added.
First of all the local scope naturally remains i.e., when an event is raised with local scope only the source
statechart will be able to act on it. Next we have a global scope that will make events visible for all currently
instantiated statecharts and besides that an event can also be directly send to a statechart using the narrow
scope. Similar to the latter a special class diagram scope is present that is used for management events like
the creation of new instances. And last there is an output scope for attaching events to output ports in order
to communicate with components outside of the model.

10

Figure 1.5: This figure illustrates the relation between classes in a class diagram and the statecharts that
describe their behaviour.

Actor Model

The formalism can be seen as a case of the actor model [HBS73]. The actor model is a mathematical model
for concurrent, fault-tolerant and highly scalable computation that has actors as its main building blocks
which communicate using messages. In response to a message that it receives, an actor may:

• Make local decisions and changes.
• Create more actors.
• Send messages to other actors it has access to.
• Determine how to respond to the next message received.

The inherently asynchronous nature and absence of a shared state lends itself for highly parallel or dis-
tributed implementation. In our formalism instances of classes will be the actors, all having a statechart
defining their behaviour. The messages are the events (which can thus also be send between actors) and
these events will automatically be forwarded to the statechart of the receiving actor, making it easier to
react.

1.2 Concrete Syntax

The concrete syntax of the SCCDXML formalism is based on SCXML, which is a Statecharts variant
developed by the W3C and is described in a working draft specification [BAA+13]. SCXML specifies a
textual syntax for Statecharts based on eXtensible Markup Language (XML). SCCDXML will adopt most
of the SCXML specification and combine it with a simple XML representation to describe class diagram
constructs.

We will first collaborate on our motivation for using (SC)XML in subsection 1.2.1. We will then look into
the syntactic structures and corresponding XML tags, together with the available attributes and children. We

11

do this for the class diagram and statechart structures seperately in subsection 1.2.2 and subsection 1.2.3
respectively. Next the different executable components available are discussed in subsection 1.2.4. This is
then followed by an overview of the different macros in subsection 1.2.5 and an explanation of the syntax
for state-referencing in subsection 1.2.6. Note that when talking about the context component (e.g. context
statechart, context state) in the explanation of a certain tag, it refers to the component that certain tag belongs
to.

1.2.1 Motivation for using XML

There are several reasons why XML has been used for the SCCDXML formalism. First of all we wanted to
base ourselves upon some existing format for the concrete syntax instead of creating an entirely new one.
Since SCXML[BAA+13] is seen as a standard, this gives us proof of its usability to model state charts.

Next, XML documents are human-readable and human-editable, which means that complex tooling is not
needed to develop these. Any text editor can be used to create XML files, and while graphical environments
could improve the workflow of designing new models, they are definitely not necessary. Furthermore, XML
documents are plain text files and thus can easily be managed using an off-the-shelf version-control system,
such as Git or Mercurial.

Also most of the widely used programming languages provide libraries to handle XML documents, thus
easing the implementation of tools to handle the formalism. This is not only beneficial for interpreting
XML documents used as input for a compiler, but it also greatly facilitates the generation of models made
with a visual editor.

Finally, standards are available for querying and transforming XML documents, as well as open-source im-
plementations of these standards. For one there is XPath [CD99], a W3C standard which describes a notation
for navigating the hierarchical structure of XML documents. Similar to this standard we define a method
for referencing states in subsection 1.2.6 and a way of traversing the class hierarchy through associations
in subsubsection 2.2.1. Likewise, the W3C standard XSLT [Cla99] provides a language for transforming
XML documents, which could be used to implement model transformations. The latter however is out of
scope for this paper.

1.2.2 Class Diagram

<diagram>

The outermost container element <diagram> represents a class diagram and should only occur once in a
model. It has two optional attributes name and author, both giving straightforward extra information about
the diagram. The children nodes allowed for a diagram are :

• <description> : An optional child element enclosing the description of the model.
• <class> : Defines a class as part of the diagram which should at least occurs once.
• <inport> and <outport> : Respectively defines an input port or output port for the diagram. A port

has as mandatory attribute name, which should uniquely identify the port. The ports can occur zero

12

or more times.
• <top> : An optional section for imports and definitions that need to be at the top of the generated

document and can be referenced anywhere in the diagram.

<class>

The <class> tag defines a class as part of a class diagram. It has a single flag attribute default which
defines whether the class is the default class of the diagram or not. As a logical consequence one and only
one <class> in a single <diagram> should have a positive evaluating default attribute unless <diagram>

contains only one <class> child. If the latter is the case then the single <class> will be used as default.
The default class will be instantiated once when the diagram is created. The different children available
for a class are <relationships>, <method>, <attribute> and <scxml>. The latter represents the dynamic
behaviour of the containing class in the form of a statechart.

<method>

The <method> tag defines a method as part of a class. The mandatory attributes for a method are name

and type, defining the identifier and the return type respectively. A method with the same name as the
containing <class> will be considered a constructor, the same counts for a destructor where the class name
is prepended with a ∼. In case of a constructor or destructor, the type attribute is ignored. The optional
access attribute defines the access level of the method with as default value public. A method needs to
have a <body> child containing the code that should be evaluated when the method is called. For proper
functioning this code should match the target language of the compiler. Optional formal parameters can be
defined with the <parameter> tag and have the following attributes :

• name : The identifier of the parameter.
• type : The type of the parameter.
• default : The optional default value for the parameter.

<attribute>

The <attribute> tag defines a member attribute of a class. The mandatory XML attributes for the element
are name and type, which can be supplemented with the optional init-value attribute that defines an initial
value of the attribute. Attributes of an instance can be accessed from within that instance using the SELF

macro. Macros are explained in detail in subsection 1.2.5.

<relationships>

To define the different relations between the different classes in the diagram the <relationships> tag should
be used. To set up an association from one class with another (note the uni-direction of the association) the
<association> tag should be used inside the source class with the target class set as value for the class

attribute. Both the minimum and maximum cardinality of the association can be set using the min and max

attributes respectively. The minimum defaults to zero while the maximum has N as it’s default value mean-
ing that any number of instantiations of this association is possible. A name for the association should be

13

defined using name attribute. This name will be used when accessing associated instances as explained in
subsubsection 2.2.1.

The <inheritance> tag defines a super class for the context class, from which it inherits. The class name
of the super class should be set as the class attribute and a priority can be set using the priority attribute. In
case of multiple inheritance the super class with highest priority will be inherited from first. Naturally this
priority attribute is only available for target languages that support multiple inheritance.

1.2.3 Statechart

In this subsection we zoom in on the elements that construct statecharts. They are illustrated in Code
Sample 1.1 to Code Sample 1.4 as the SCCDXML variants of the examples we saw in subsection 1.1.1. Note
that we skip the diagram information and thus the resulting XML segments aren’t SCCDXML compliant
on its own, they should be added as child of a <class> element as we saw in subsection 1.2.2.

<scxml>

The <scxml> tag defines (the root of) a statechart and is simply a top level composite state sharing the
allowed children and attributes of the <state> discussed below. Only the id attribute is omitted for the root
element.

<state>

The <state> tag simply represents a state. This can either be a basic state or a composite state depending
on its position in the hierarchy. Each state should have an id that’s unique at sibling level so that each state
in the statechart can be uniquely accessed XPath-like using a sequence of state id’s (see subsection 1.2.6
for a detailed explanation). For composite states, meaning that the <state> encloses other states, two other
attributes are available.

First there is initial, which should be set to the identifier of the initial child state. Second there is the conflict

attribute, defining how a transition conflict should be resolved. The possible values for this attribute are :

• inner : The inner-most enabled transition will be fired.
• outer : The outer-most enabled transition will be fired.
• inherit : The conflict value of the parent will be used. Consequently this is an invalid value for the

root node.

The attribute defaults to inherit unless the context state is the root, then outer will be used. As this setting
isn’t available in most formalisms based on Statecharts (including SCXML), we’ll illustrate the behaviour
of the attribute using Figure 1.6.

When state A is active and an event i is cast, both the transitions to B and Z become enabled but only one
transition is allowed to be fired. Since randomly picking a transition would result in indeterminism, either
consistent behaviour could be enforced (which restricts the possibilities) or letting the modeller define what

14

Figure 1.6: Illustrating the use of the conflict attribute of a state. When state A is active and event i is cast,
the attribute will decide which transition needs to be fired.

should happen in such a case. Preferring the latter, the conflict attribute has been added. If in the example
that attribute of the root element would be set to inner, the transition to B would be fired. In case of the
default outer, the transition to Z would be fired.

The optional <onentry> and <onexit> children of a state hold executable content to be run upon respec-
tively entering and exiting the state. The elements that count as executable are discussed in subsection 1.2.4.
Other allowed children for a state are <state>, <parallel>, <history> and <transition>.

<scxml initial="A">

<state id="A">

<transition event="c" cond="P" target="../B">

<raise event="d"/>

</transition >

</state >

<state id="B"/>

</scxml >

Code Sample 1.1: The SCCDXML variant of Figure 1.1

<scxml initial="A">

<state id="A">

<transition event="h" target="../B"/>

</state >

<state id="B" initial="C">

<state id="C">

<transition event="k" target="../D"/>

15

</state >

<state id="D"/>

<transition event="j" target="../A"/>

</state >

</scxml >

Code Sample 1.2: The SCCDXML variant of Figure 1.2

<parallel>

The <parallel> tag models parallel states and has the same children and attributes as the <state> node,
except for the initial attribute. This is logical since all substates become active, instead of just one, upon
entering the context state.

<scxml >

<parallel id="Y">

<state id="A" initial="K">

<state id="K">

<transition event="x" target="../L"/>

</state >

<state id="L"/>

</state >

<state id="B" initial="D">

<state id="D">

<transition event="z" target="."/>

</state >

</state >

</parallel >

</scxml >

Code Sample 1.3: The SCCDXML variant of Figure 1.3

<history>

The <history> tag, representing a history state, only allows the <onentry> and <onexit> tags as children.
Its attributes are limited to an id and a type attribute. The latter has as possible values shallow and deep,
with shallow being the default one.

<scxml initial="A">

<state id="A" initial="K">

<state id="K">

<transition event="x" target="../L"/>

</state >

<state id="L"/>

<transition event="y" target="../M"/>

16

<history id="H"/>

</state >

<state id="M">

<transition event="z" target="../A/H"/>

</state >

</scxml >

Code Sample 1.4: The SCCDXML variant of Figure 1.4

<transition>

A <transition> tag defines a transition originating from its enclosing state. Its event attribute defines
which event should trigger the transition and the cond attribute is a boolean expression that guards the
transition. The target attribute defines the target state(s) of the transition; the syntax for this is described in
subsection 1.2.6. To accommodate for input events sent through ports from the diagram, a special attribute
named port is available. When set, only matching events from the specified port can enable the transition.
For a transition to fire after a number of seconds, the after attribute should specify a expression that evaluates
to a numeric value. The after attribute can not be combined with any of the other attributes except target,
which is the only mandatory attribute.

The children of a transition exist out of the different available executable components (as listed in the next
section) that should be executed when the transition is fired and out of formal event parameters. These
parameters are formed with a <parameter> tag and have the same attributes as the formal parameters of a
method i.e., name, type and default. When the transition is fired these formal parameters take the value of
the actual parameters supplied by the trigger event. These formal parameters can then be referenced in the
guard and action code using their identifiers as local variables.

1.2.4 Executable Content

Executable content is a series of zero or more executable components wrapped in a containing element
like <onentry> or <transition>. They are processed in document order. The main executable component
available is the <script> tag. Any text contained by it, will be interpreted as code of the target language to
which the compiler is set to. It’s possible to obtain the behaviour of all the other executable components by
solely using the script component.

Text contained by a <log> component will simply be outputted to a console. The <assign> component
assigns a value to either a local variable, or to a member value if the SELF macro is used for referencing.
The value is obtained by evaluating the expression of the expr attribute, while the ident attribute indicates
how to access the location to which the value needs to be assigned.

The <raise> tag allows for event generation. Its only mandatory attribute event defines the name of the
event to be cast. As for the optional attributes, not all possible combinations are valid/allowed. The scope
of the event, i.e., to which instances the event will be visible, dictates which combinations are valid and it
can be explicitly set by using the scope attribute. It’s possible values are :

17

• local : The event will only be visible for the context statechart.
• broad : The event is broad-casted and thus visible for all instances.
• output : The event will be send to an output port and is only valid in combination with the output

attribute.
• narrow : The event will be narrow-casted, i.e., sent to certain specified instances only, and is only

valid in combination with the target attribute.
• cd : The event will be processed by the object manager. See subsubsection 2.2.1.

If the scope attribute is not explicitly set, it will get a value depending on which of the other optional
attributes are set. If none of these has a value, the scope of the event will be local. Having a value for
port, which defines the name of the output port to which the event should be send, will result in an output
scope. Similarly the presence of the target attribute will enforce a narrow scope. This last attribute takes a
string as value that specifies which association links should be followed to find the target instance(s). This
is explained in detail in subsubsection 2.2.1.

1.2.5 Macros

Macros are simple strings, usually capitalized, that will be substituted by an implementation depending on
the target language during compilation. Not all macros can be used in every environment and will simply
not be replaced if they are used incorrectly. Currently available macros :

• SELF : This macro is used to refer to the context instance. To access a member of that instance, SELF

should be followed by a dot and the identifier of the wanted member. If a reference to the instance is
needed, simply providing SELF will suffice.

• INSTATE(x) : The macro will evaluate to true if the state x is currently active. How to reference a
state is explained in subsection 1.2.6.

1.2.6 State Referencing

For the referencing of one or more states, as needed for example to specify the target of a transition, we
created a syntax similar to XPath. To access a certain state, a location path should be formed that ends in
the wanted state. This location path is a string consisting of state identifiers separated by forward slashes
(’/’), they present the hierarchy to be traversed before reaching the end state.

There is the option to use either a relative path or an absolute path. The latter will start traversing the
hierarchy from the root and is denoted by prepending the path with a forward slash. The relative path will
just start traversing the hierarchy from the context state. To go a level up in the hierarchy (i.e. access the
parent of a certain state) two dots (’../’) should be used instead of a state identifier. One single dot (’.’) will
always refer to the current state in the path.

Specifying multiple target states can be done either by a comma separated list of state references, the use
of branching, or a combination of both. Branching is done by using brackets to define a common source
location path. We illustrate this with the following example :

18

1) A/B/C, A/B/D, A/B/E

2) A/B(C,D), A/B/E

3) A/B(C,D,E)

All three expressions denote the same three resulting states. For the third expression we start at the context
state where the child with id A is selected. This is then followed by going down the hierarchy and looking for
a child of A with id B. We then encounter a left bracket, meaning that we branch off from the selected B node.
Enclosed by the left bracket and an ending right bracket, we find a comma separated list of expressions.
These expressions are now parsed to obtain (a subset) of the resulting states, using B as starting point
instead of the original context state. This basically means that our result set will contain the children of B

with IDs C, D and E.

Note that more complex expressions can be used inside the branches and even nested branching is supported.
This can result in more complex expressions as shown below together with its branchless equivalent :

1) A/B/C(D/E,F(G,H)), I/J

2) A/B/C/D/E, A/B/C/F/G, A/B/C/F/H, I/J

19

2
Compiler

In this chapter we describe how a SCCDXML model gets transformed into executable code. A compiler
library has been developed (in both Python and C#) that can either be used programmatically or through a
command line application. The first phase of compilation is transforming the provided SCCDXML model
into a abstract syntax structure as discussed in section 2.1. By deploying the visitor pattern, this is then
followed by multiple visits that decorate the abstract syntax structure to facilitate code generation. We look
into these visits and their corresponding visitors in section 2.3.

The arguments for the compile operation include the path to the file to be compiled and the path to the
location where the generated file should be stored. Besides that the target language should be specified, as
well as which run-time platform the code should run on. The different platforms and their architecture are
described in section 2.2.

2.1 Architecture

The first step in the compilation process is creating an abstract data structure from the input SCCDXML
model. The (simplified) class diagram of this structure can be seen in Figure 2.1. At most levels a class in
this diagram matches an XML tag in the model. The model gets parsed using a XML library and subse-
quently the data structure gets created starting from the root. The XML root element gets transformed into
a ClassDiagram instance, its <class> children into Class instances, <method>s into Method instances,
and so on.

20

Figure 2.1: Class diagram illustrating the abstract data structure created from an SCCDXML model.

21

2.2 Runtime Platform

The execution/simulation of SCCDXML models is similar for every single model. To avoid the unnecessary
generation and compilation of the duplicated execution code, a runtime library is created that combines all
shared code. Multiple execution/simulation methods can be supported by this library, which we will call
runtime platforms. The wanted execution method should be supplied as parameter to the compiler, which
will then generate the correct calls to the matching platform together with the model-specific code.

In subsection 2.2.1 we first look at the entities that are shared by all platforms. We then look at the two
runtime platforms supported by our runtime library, event simulation and game loop simulation, in subsec-
tion 2.2.2 and subsection 2.2.3 respectively.

2.2.1 Architecture

The runtime library mainly consists out of base classes that should be inherited by the platform specific
classes and by the generated classes. This specific architecture facilitates the addition of new platforms
and thus well known simulation methods like headless simulation (as fast as possible) or GUI interleaved
execution (using the timing system of the relevant GUI library) can be added easily in the future.

Event Queue

Most of the constructs in the library need to be able to store events and handle them appropriately at the
correct time. For this reason a queue-like data structure was created that stores a sequence of events; each
event is paired with its remaining time until it should be processed. The available methods on this structure
are :

• add(event, time) : Pushes an event and its remaining time in the queue.
• decreaseTime(offset) : Lowers all the remaining times with the offset value.
• getEarliestTime() : Returns the lowest time value present in the queue. If the queue is empty, positive

infinity is returned.
• popDueEvents() : Returns a list of all the events of which the remaining time is lower than zero.

These events are removed from the structure.
• isEmpty() : A simple check whether the data structure contains events or not.

Runtime Class

Every class defined in the model gets compiled into a class that inherits from one shared runtime base class.
This class contains a series of methods and members that are key for a correct execution of the model.
Every instance has its own event queue containing the events that are local to its statechart. Next to that,
this class is also responsible for managing the timers for transitions. At compile time, every timed transition
is assigned a unique integer that will be used as index for a dictionary that map these transitions to their
remaining time. An index of a transition is added to this dictionary upon entering the state from which this

22

transition originates. This basically initializes the timer with the initial value supplied by the after attribute.
Upon leaving the state, the indexes are removed again from the dictionary.

The getEarliestEventTime() method returns the remaining time until the instance needs attention. This is
calculated by taking the minimum time from both the event queue and the timer dictionary. Having a zero
or negative earliest time is normally followed by a call to the step() method (but this is the responsibility of
the object manager). In Code Sample 2.1 we see the pseudo code for the step method.

public void step(delta){

if (!this.active)

return; //Simulation of statechart not started yet

this.events.decreaseTime(delta); //Decrease the remaining time of all events

if (this.timers.Count > 0) //Check if there are timers initialized

{

next_timers = new Dictionary(); //The dictionary to replace the current one

foreach ((key,time) in this.timers) //Iterate over all timers

{

new_time = time - delta

if (new_time <= 0.0) //Timer value goes below 0

this.addEvent(new Event("_" + key + "after")); // transform to event

else

next_timers[key] = new_time; //Transition not due

}

this.timers = next_timers; //Set new dictionary

}

this.microstep();

while (this.state_changed)

this.microstep();

}

Code Sample 2.1: Pseudo code for RuntimeClassBase’s step() method

The method requires one delta parameter, which should be the time that has passed since the last call to
this instance’s step() method. As can be seen in the code, meaningful changes are only performed when the
instance has already been activated, which is done by calling the virtual start() method. In case execution
has started, the delta parameter is used to update the event times by calling decreaseTime() on its event
queue. A similar action is then performed on the timers dictionary. The timers are first checked to see if any
of them has gone below zero, this evaluation happens using the stored value subtracted by the delta value.
If a timed transition is due, a new event is added to the queue based on that timer’s index which will be used
in the generated code to trigger the actual transition.

23

private void microstep(){

due_events = this.events.popDueEvents();

if (due.Count == 0)

this.transition ();

else

foreach (event in due)

this.transition(event);

}

Code Sample 2.2: Pseudo code for RuntimeClassBase’s microstep() method

The step() method ends with repeated calls to microstep() until that no more results in changes to the state.
In Code Sample 2.2 we see that all the events that are due are first gathered. If at least one event is due, the
abstract transition() method is called for every event. This method will be implemented by the generated
classes. If no events are due, the transition() method is still called (but without arguments) as it is possible
that unconditional transitions have been enabled that can still affect the state.

Object Manager

The object manager is an always present entity responsible for managing the class diagram and coordinat-
ing all corresponding actions. This includes the creation and deletion of new instances and handling the
communication between the different actors. Commanding the manager happens solely through events (the
manager is an actor itself) but for some actions like narrow casting, this is abstracted away by the formal-
ism. To directly message the manager, an event should be cast with cd as value for the scope attribute. The
compiler will automatically set the first parameter of such an event to be a reference to the sender, so that
the object manager can reply to the caller if needed. What follows is an overview of the different events the
manager acts upon, their parameters, and the replies the manager returns as response to them.

create_instance Upon receiving this event the object manager will create a new instance, if the class dia-
gram allows it. The first user-supplied parameter should be the name of the association for which a
new instance should be created, followed by any constructor parameters. If creation succeeded a reply
event instance_created will be send to the requester with as argument the name of the association for
which an instance was created. The same argument is send with the instance_creation_error in case
creation failed or was not allowed.

delete_instance The delete_instance event allows for the deletion of instances. The manager expects the
supplied string argument to be an association reference (see subsubsection 2.2.1) referencing the
instance(s) to be deleted. All relations with the deleted instance(s) are removed as well, which implies
that the deletion needs to conform to the class diagram.

start_instance This event will start the execution of the statecharts of the instances referenced by the sole
association reference argument.

24

associate_instance On creation of an instance, it’s associated solely with its creator or with no instance
at all in case of the default instance. The associate_instance event makes it possible to associate
instances with multiple other instances. This event expects two association references as arguments,
a source path and a target path. The instance(s) found processing the first reference, will be added
to the association that results by processing the second. This implies that the second reference can’t
have an index specified for the last association name.

Since the object manager is the only entity that has access to all the present instances, it also plays an
important role in the correct execution of the diagram. Two important methods are exposed for execution
purposes, stepAll() and getWaitTime(). The latter simply returns the remaining time until the first up-
coming event. This can be either an event send directly to the object manager or an event from any of the
instances present in the class diagram. stepAll() simply calls its own step() method (which handles its own
events), together with all the step() methods of the instances.

Association Structure

The object manager contains a dictionary that maps every runtime class instance to an associations wrapper.
This wrapper links the mapped instance to its associations, using another dictionary that maps association
names to an Association class. This Association class encapsulates minimum and maximum cardinality
of the association and a list of the linked instances. This list, its size constrained by the cardinality, is
used for traversing the association hierarchy. To do this we again created an XPath-like syntax to create
association references. Such reference is a string consisting of association names, optionally followed by a
square-bracketed index, separated by forward slashes (’/’). They present which associated instances should
be traversed to reach the requested instance(s). The algorithm used to translate an association reference into
the resulting instances is shown in Code Sample 2.3.

current_set = [source_instance];

foreach ((association_name ,index) in association_reference) {

next_set = [];

foreach (current in current_set){

association = current.getAssociation (association_name);

if (index >= 0) //index was specified

nexts.append(association.getInstance(index)); //Only add the instance with

matching index

else if (index == -1) //index was not specified

nexts.extend (association.getAllInstances()); //Add all instances of this

association

else

throw new AssociationReferenceException("Incorrect index in association

reference.");

}

currents = nexts;

}

25

return currents;

Code Sample 2.3: Pseudo code for the processing of an association reference

The index after an association name should only be specified if just a single instance is targeted. If omitted,
all instances of the association will be added to the current set.

Controller

The controller is the top level element and acts as an interface to the class diagram. It has access to all the
instances that make up the diagram through the object manager and takes care of the execution of the state
charts. If the default instance needs any constructor arguments, these should by supplied to the constructor
of the controller. Each runtime platform is represented by a different controller class inheriting from a
common base class. The interface of this base controller exists out of the following methods :

• start() : Starts the execution of the class diagram and thus of all present statecharts.
• stop() : Ends the execution of the class diagram.
• addInput(event_name, port[, parameters, time]) : Adds an input event to the diagram with the spec-

ified arguments. Note that the supplied time is relative.
• addInputEvent(event[, time]) : Adds an already created event with optional relative time.
• addEventList(event_list) : Inputs a list of events.
• addOut putListener(ports) : Creates and adds an output listener to the diagram and then returns the

reference.

OutputListener

Receiving output from a compiled diagram is done by attaching output listeners to the correct ports. By
calling the addOut putListener() method on the controller with an array of ports, a listener gets created
and returned. The diagram will attach all output for the listed ports to this listener and thus output can be
easily gathered by calling the fetch() method on it. The controller is responsible for creating the correct
type of output listener by overloading the protected createOut putListener() method of ControllerBase.
For instance, when using the event-simulation platform, listeners of type ConcurrentOut putListener will
be created which are thread-safe.

2.2.2 Event Simulation

The run-time platform that approximates real-time simulation the best is the event-simulation platform. In
Figure 2.2 we see that an event gets processed the moment it gets cast. The platform implements this by run-
ning the complete diagram in a separate thread allowing accurate timing of the actions. T hreadsControllerBase,
the controller class representing the platform, overrides the start() method to start the thread. This thread
runs the method depicted in Code Sample 2.4. Most of the timing functionality occurs in the handleWaiting()

method. It calculates how long it takes until the next planned action, using its input queue and the getWaitTime()

of the object manager, and blocks the thread accordingly.

26

private void run(){

this.last_recorded_time = now();

base.start();

last_iteration_time = 0.0;

while (true)

{

this.handleInput(last_iteration_time);

this.object_manager.stepAll(last_iteration_time); //Compute the new state based

on internal events

this.handleWaiting(); //Blocks the thread until action is required

acquire();

if (this.stop_thread)

break;

release();

previous_recorded_time = this.last_recorded_time;

this.last_recorded_time = now();

last_iteration_time = this.last_recorded_time - previous_recorded_time;

}

}

Code Sample 2.4: Pseudo code for ThreadsControllerBase’s run() method

T hreadsControllerBase overrides the controller’s input methods to be thread-safe and to notify the thread
of new input. When the thread receives such notification or when the thread-blocking times out, it continues
executing and calculates how much time has passed. This time is then used to handle the input and call the
stepAll() method of the object manager. To properly handle the thread, a join() method is added to the
controller which blocks the calling thread until the diagram’s thread terminates.

2.2.3 Game Loop

The goal of the game platform is to allow easy integration of the generated code with games and game
engines that make use of a game loop for execution. The platform adds an extra method update() to the
controller, which should be called every frame of the loop with as sole argument the time that has passed
since the last call. This way the controller is able to execute the actions that should have happened during
the last frame, resulting in a decent approximation of continuous time. The method’s pseudocode is shown
in Code Sample 2.5, and Figure 2.2 illustrates the delayed processing of an event at the beginning of the
next frame. The platform supports both fixed and variable time steps.

27

Figure 2.2: Diagram illustrating the different simulation methods.

public void update(delta){

this.input_queue.decreaseTime(delta);

foreach(event in this.input_queue.popDueEvents())

this.broadcast(event);

this.object_manager.stepAll(delta);

}

Code Sample 2.5: Pseudo code for GameControllerBase’s update() method

2.3 Code Generation

Our code generation makes highly use of the visitor pattern. This design pattern is a way of separating our
algorithms from the main datastructure. A practical result of this separation is the ability to add new visitors
(for instance one for generating a new target language) without having to modify any of the structure classes.
First the initial datastructure gets created as described in section 2.1 by parsing the XML model. Separate
visitors then decorate the structure with extra information with as ultimate goal having code generated by
the last visitor. All classes that are part of the structure inherit from Visitable, which adds an accept()

method to the classes’ interface to implement double dispatch. This method expects an instance of type
Visitor as parameter, which should implement visit() methods for each class in the structure it wants to act

28

upon. Finally the accept() method will then call the supplied visitor’s visit() method with its own instance
as argument, and polymorphism will select the correct implementation. In the following sections we will
go over the different visitors currently present in the implementation of the compiler.

2.3.1 State Linker

The task of the StateLinker visitor is to replace any state reference by the StateChartNode instance(s) it
targets. The AST is traversed in an optimal way to rapidly find all instances of a StateReference. The
corresponding expressions are first parsed into tokens that are meaningful for our syntax as described in
subsection 1.2.6. Next, it takes the context node as current node and starts iterating over the tokens, taking
actions accordingly. Finally, the resulting nodes are then added to the StateReference instance so that it can
be easily used by the following visitors.

2.3.2 Path Calculator

The PathCalculator calculates for each transition which sequence of nodes should be exited and entered.
An important element in this calculation is the Least Common Ancestor (LCA). The LCA of a set of nodes
is the node n such that n is a proper ancestor of all nodes in the set and no descendant of n has this property.
Note that there is guaranteed to be such an element since the root is a common ancestor of all states. Note
also that since we are speaking of proper ancestor (parent or parent of a parent, etc.) the LCA is never a
member of the provided set of nodes. In Code Sample 2.6 we see the method calculating the LCA of a
transition, using its source- and target-nodes as input set.

calculateLCA(transition){

//Iterate over all the ancestors of the source node , starting at the bottom

foreach(anc in transition.parent.getAncestors()){

all_descendants = true;

//Check for each target node if it is a descendant of the current ancestor

foreach (node in transition.target.target_nodes){

if (!node.isDescendantOf(anc)){

all_descendants = false;

break;

}

}

//The first ancestor all target nodes descend of, is the LCA

if (all_descendants)

return anc;

}

//Since every node has the root as ancestor , this statement is never reached.

return null;

}

Code Sample 2.6: Pseudo code for calculating the Least Common Ancestor (LCA)

29

This method is then used in the StateChartTransition visit depicted in Code Sample 2.7. Determining
which exit actions should be executed for a transition is fairly easy once the LCA is known. It’s as simple
as executing the exit actions of the ancestors up to (but not included) the LCA. Calculating the sequence of
enter actions is a bit more complex as a transition can have multiple target nodes. We start off with an empty
result set that will hold the sequence of nodes to be entered. Then for each target node, we iterate over its
ancestors until we either reach the LCA or a node that is already part of the result sequence. We then add
these in reversed order to the result sequence and move on to the next target node. Nodes are added to the
result together with a boolean value which specifies whether it’s a target node or not. This is used in code
generation to determine whether default child states should be entered or not.

visit(StateChartTransition transition){

//Find the scope of the transition (lowest common proper ancestor)

LCA = this.calculateLCA(transition);

//Calculate exit nodes

transition.exit_nodes = [transition.parent];

foreach(node in transition.parent.getAncestors()){

if (node == LCA) break;

transition.exit_nodes.Add(node);

}

//Calculate enter nodes

transition.enter_nodes = [];

//We iterate over all target nodes and add the nodes to enter accordingly

foreach (target_node in transition.target.target_nodes){

to_append = [(target_node ,true)];

foreach (anc in target_node.getAncestors()){

//If we reach the LCA in the ancestor hierarchy we break

if (LCA == ancestors[ancesto_index])

break

//boolean value to see if the current ancestor should be added to the result :

to_add = true

//If we reach an ancestor that is already listed as enter node ,

//we don’t add, and break :

foreach ((enter_node , is_end_node) in transition.enter_nodes){

if (enter_node == ancestors[ancestor_index]){

to_add = false;

break;

}

}

if (to_add)

to_append.Add((ancestors[ancestor_index], false));

else

break;

}

to_append.Reverse(); //Reversed order for enter hierarchy

30

transition.enter_nodes.AddRange(to_append);

}

}

Code Sample 2.7: Pseudo code for PathCalculator’s visit method for StateChartTransitions

2.3.3 Code Generator

The last visitor is responsible for generating actual code. For each target language, a different visitor should
be created which traverses the completely decorated structure in a top-down order. The generated code
consists out of classes that inherit from the entities present in the matching run-time platform. Each Class

will first generate a unique integer (ID) for every node in its statechart in the form of an enumeration. The
current state is then maintained using a dictionary that maps these IDs to a list of IDs of its children that are
currently active. If at least one history state is present in the statechart, then a similar structure is maintained
to save the history snapshots of compound states.

The resulting code contains a transition method, accepting an event as argument, for each node in the
statechart. When an event occurs, the root’s transition method is called first with that event as parameter.
The root’s transition method will then forward the event to its active children, which will in turn do the same
unless they consume the event. Note that the forwarding of the event depends on which conflict resolving
method is used. To illustrate this we look at the pseudo code of the transition method of a composite state
in Code Sample 2.8 where the conflict attribute is set to outer.

transition_Root_state1(event){

catched = false; //Boolean value denoting whether the event gets consumed

enableds = []; //List of enabled transition IDs

if (event.getName() == "event_x" && event.getPort() == "port_x"){

enableds.Add(0);

}

if (event.getName() == "event_y" && event.getPort() == "port_y"){

enableds.Add(1);

}

if (enableds.Count > 1){

//Log warning that indeterminism is detected.

//Only the first in document order enabled transition will be executed.

}

if (enableds.Count > 0){

enabled = enableds [0];// Transition ID to be executed

if (enabled == 0){

//Fire transition with ID 0

this.exit_Root_state1();

//Action code

this.enter_Root_state2();

}

31

else if (enabled == 1){

//Fire transition with ID 1

this.exit_Root_state1();

//Action code

this.enter_Root_state3();

}

//A transition was fired so we can set :

catched = true;

}

if (!catched){

//The event was not consumed so forward to active children

if (this.current_state[Node.Root_state1][0] == Node.Root_state1_a){

catched = this.transition_Root_state1_a(event);

} else if (this.current_state[Node.Root_state1][0] == Node.Root_state1_b){

catched = this.transition_Root_state1_b(event);

}

}

return catched;

}

Code Sample 2.8: Pseudo code for the transition method of a composite state with outer conflict resolving

We see that each transition originating from the context node gets assigned a numeric ID. The method
first checks for each transition whether they are enabled or not, if so its ID is added to the list enableds.
If multiple transitions get enabled we warn the user of the detected indeterminism and only fire the first
enabled one. In the example we clearly see that before the action code of the enabled transition is executed,
a call is made to the exit method of the context node. This method will first execute the user-defined exit
actions followed by removing the node from the current state and, in case of a history state, make a snapshot
of the state of its children. Only then the action code is executed and a call is made to the enter method.
Note that it’s possible that multiple exit and enter methods can be called when traversing multiple layers of
nodes.

If a transition got fired we set the boolean variable catched to true. We use this value to determine whether
or not we should forward the event to the active children. In case of a negative value we consult the
current_state dictionary to find the active substate and forward the event accordingly. Checking the current
state however is unnecessary for parallel nodes, as is the case in Code Sample 2.9, since all children are
active when the parent is active. Also different in this example is that the conflict attribute is set to inner

causing the event to be send to the children first, before checking if the event enables any of the transitions.
If (at least one) of the children consumes the event, the transitions at this node aren’t considered any more.
This is done by returning the value of catched to the caller.

transition_Root_state1(event){

catched = false; //Boolean value denoting whether event gets consumed

//Conflict resolving set to "inner", first check children.

32

catched = this.transition_Root_state1_a(event) || catched;

catched = this.transition_Root_state1_b(event) || catched;

if (!catched) {

enableds = [];

if (event.getName() == "event_x" && event.getPort() == "port_x"){

enableds.Add(0);

}

...

if (enableds.Count > 0){

enabled = enableds[0];

if (enabled == 0){

this.exit_Root_state1();

this.enter_Root_state2();

}

catched = true;

}

}

return catched;

}

Code Sample 2.9: Pseudo code for the transition method of a parallel state with inner conflict resolving

While each Class can have multiple constructors defined for certain target languages, a part of the construc-
tion will always be the same in order to initialize the different structures. For this reason a commonCon-

structor() is added which will be called first by every (user-defined) constructor. Also, the start() method
of the runtime classes gets overridden to first call the base behaviour followed by entering the default states
and executing the corresponding enter actions.

33

3
Test Framework

3.1 Requirements

In order to efficiently and correctly verify the functionality of our compiler, the tests and testing framework
need to adhere to the following requirements :

1. Automated : We want to be able to (re)run the tests with as little effort as possible.

2. Isolated : A single test needs to be unaffected by the presence, absence, or results of other tests.

3. Easy to write : Writing a test should be easy and cost little effort.

4. Fast execution : Since the tests should be frequently rerun, they should take as little time as possible.

5. Multi-Target : The tests should be able to run on the different target platforms and languages without
the need for modifications. This makes it easier to maintain current tests, add new tests, and add new
target platforms and languages.

3.2 Architecture

The most optimal set-up of a test would consists out of three SCCDXML models: one model being the
model under test (MUT), another generating input events for the MUT, and a last model to receive and act
on the output of the MUT. Depending on which state the latter ends up in, the test either succeeds or fails.

34

However, since we are not sure whether the compiler is functioning correctly, we cannot trust the results of
these models and thus this isn’t a valid method of testing.

We chose for the tracing alternative where the test includes an input list and an expected output trace. The
test suite then compares the actual output to the expected output and announces the result. Since the tests
need to be platform and target language independent we include this information in the XML document
representing the model to be tested. One (or multiple) <test> tags get added as a child of <diagram>.
Since this is purely extra information the document can still be SCCDXML compliant and we can thus use
the compiler without any problem. Only when inserted in the test framework, the test information holds
meaning. Note that to maintain the target language independence the tests should not rely on language
specific action code, and the test execution code should be ported to every target language.

Each <test> tag should contain maximum one <input> tag and one <output> tag, defining the input and
the expected output respectively. The input consists out of a list of events specified with an <event> tag
and the following attributes :

1. name : The name of the input event.

2. port : The input port that will be used for the event.

3. time : The time offset of the event. If multiple events have the same time offset, the events are added
in document order.

The expected output works in a similar manner but has a notion of slots added. Since SCCDXML doesn’t
have a notion of simultaneous events, we can not know for sure (unless we look into the implementation)
which event will be output first in the case two parallel sections cast an event in reaction to the same input
event. With the slot structure we would place these two expected events in the same slot and then their order
of appearance doesn’t matter. As long as both events get generated the test will pass. We see an example of
this in Code Sample 3.1. This specific test validates the functionality of a history state in a parallel element.

<diagram >

<description >

Testing history where the history state is directly inside a parallel element.

</description >

<inport name="test_input" />

<outport name="test_output" />

<class name="TestClass" default="true">

<scxml initial="parallel">

<parallel id="parallel">

<state id="orthogonal_1" initial="orthogonal_inner_1">

<state id="orthogonal_inner_1" initial="state_1">

<state id="state_1">

<onentry >

<raise port="test_output" event="in_state_1" />

35

</onentry >

<transition port="test_input" event="to_state_2" target="../state_2"/>

</state >

<state id="state_2">

<onentry >

<raise port="test_output" event="in_state_2" />

</onentry >

</state >

<transition port="test_input" event="to_outer_1" target="../outer_1"/>

</state >

<state id="outer_1">

<onentry >

<raise port="test_output" event="in_outer_1" />

</onentry >

</state >

</state >

<state id="orthogonal_2" initial="orthogonal_inner_2">

<state id="orthogonal_inner_2" initial="state_3">

<state id="state_3">

<onentry >

<raise port="test_output" event="in_state_3" />

</onentry >

<transition port="test_input" event="to_state_4" target="../state_4"/>

</state >

<state id="state_4">

<onentry >

<raise port="test_output" event="in_state_4" />

</onentry >

</state >

<transition port="test_input" event="to_outer_2" target="../outer_2"/>

</state >

<state id="outer_2">

<onentry >

<raise port="test_output" event="in_outer_2" />

</onentry >

</state >

</state >

<history id="history_1" type="shallow">

</history >

<transition port="test_input" event="exit" target="../next_to_parallel"/>

</parallel >

<state id="next_to_parallel">

<onentry >

<raise port="test_output" event="outside" />

</onentry >

36

<transition port="test_input" event="to_history_1"

target="../parallel/history_1"/>

</state >

</scxml >

</class >

<test >

<input >

<event name="to_outer_1" port="test_input" time="0.0"/>

<event name="to_outer_2" port="test_input" time="0.0"/>

<event name="exit" port="test_input" time="0.0"/>

<event name="to_history_1" port="test_input" time="0.0"/>

</input >

<expected >

<slot >

<event name="in_state_1" port="test_output"/>

<event name="in_state_3" port="test_output"/>

</slot >

<slot >

<event name="in_outer_1" port="test_output"/>

</slot >

<slot >

<event name="in_outer_2" port="test_output"/>

</slot >

<slot >

<event name="outside" port="test_output"/>

</slot >

<slot >

<event name="in_outer_1" port="test_output"/>

<event name="in_outer_2" port="test_output"/>

</slot >

</expected >

</test >

</diagram >

Code Sample 3.1: A model that tests the history functionality of a parallel node.

The tests were created in a bottom-up order, first we developed tests that validate each different construct
separately and then we step by step merged the different constructs to see if they function properly together.
There are also tests that simply validate the XML model. On the one hand valid models are supplied that
should throw no errors, while on the other hand faulty models are inserted into the compiler that should
generate a specific compiler exception. When the correct exception is caught, the tests is considered to be
successful. For this we added an exception attribute to the <test> tag as depicted in Code Sample 3.2. This
test includes a model that has two sibling states with the same ID; since this should not be allowed, the test
expects a CompilerException.

37

<diagram >

<description >

Testing duplicate id’s.

</description >

<class name="Test1">

<scxml initial="state1">

<state id="state1"/>

<state id="state1"/>

</scxml >

</class >

<test exception="CompilerException"/>

</diagram >

Code Sample 3.2: A model that tests the detection of duplicate IDs

38

4
Example Case : Tank Wars

To proof the usability of our formalism and the correctness of our compiler, a simple game environment
has been created where a user-controlled tank has to fight one or more computer-controlled tanks. Both the
artificial intelligence and the user-input handling in the game are modelled with the SCCDXML formalism
and consequently compiled into executable code. We will see that the resulting code is stable and that the
designs are simple but effective. The developed game has been called Paper Warfare (See Figure 4.1) and
has rather complex controls where the body and the cannon of the tank have to be controlled separately.
This makes not only the game-play more interesting but helps us in showing that handling fairly complex
input is rather easy with the modelling formalism.

As our goal was to make the game resemble commercial games, a game-loop was used for the simulation of
the game. For this reason the models are obviously compiled to run on the game-loop platform and have an
input port engine which receives events from the game engine. The most important event here is the update

event which is send for every frame. The input-handling model has an extra input port for the input events
generated by the user, and an output port to send events to the game to update the GUI. Both the XML and
visual representation of the models are included.

39

Figure 4.1: Our example game Paper Warfare where we demonstrate the usability of the SCCDXML
formalism

4.1 User-Controlled Tank

To handle the user-input and the corresponding actions, the body and the cannon of the tank each have
their own actor. A separate actor Main (as can be seen in Code Sample 4.1) is responsible for the initial
instantiation of the other actors and setting up the needed associations.

<?xml version="1.0" ?>

<diagram author="Glenn De Jonghe" name="Player Tank">

<description >

Handling the player tank.

</description >

<inport name="engine" />

<inport name="input" />

<outport name="gui" />

<class name="Main" default="true">

<attribute name="tank" type="PlayerTank"/>

<method name="Main">

<parameter type="PlayerTank" name="tank"></parameter >

<body >

self.tank = tank

</body >

40

</method >

<relationships >

<association class="Cannon" name="cannon" min="1" max="1"/>

<association class="Body" name="body" min="1" max="1"/>

</relationships >

<scxml initial="state_1">

<state id="state_1">

<transition target="../state_2">

<raise event="create_instance" scope="CD">

<parameter expr="’cannon ’"/>

<parameter expr="SELF.tank"/>

</raise >

</transition >

</state >

<state id="state_2">

<transition event="instance_created" target="../state_3">

<raise event="create_instance" scope="CD">

<parameter expr="’body ’"/>

<parameter expr="SELF.tank"/>

</raise >

</transition >

</state >

<state id="state_3">

<transition event="instance_created" target="../end">

<raise event="start_instance" scope="CD">

<parameter expr="’cannon ’"/>

</raise >

<raise event="start_instance" scope="CD">

<parameter expr="’body ’"/>

</raise >

</transition >

</state >

<state id="end"/>

</scxml >

</class >

...

Code Sample 4.1: The Main component of the player-controlled tank model.

To have this actor instantiated on creation of the compiled diagrams’ controller, the default attribute is set
to true. Since Main has a constructor defined with parameters, these parameters should be supplied to the
controller’s constructor. In our case the sole parameter is tank, which should be an object representing the
properties and state of the tank to be controlled. It gets assigned to the member attribute with the name tank

which makes it accessible from anywhere in the class specification (including its state chart).

41

Figure 4.2: Visual representation of Code Sample 4.1

Enclosed by the <relationships> tag, we see two associations defined that will allow the instances to be
created. When the start() method is called on the top-level controller, the model starts execution. Main

starts in state state_1 and immediately transitions to state_2 casting a create_instance event to the object
manager. The first parameter cannon indicates that an instance should be created for the association with
the same name. The name indicates an association with Cannon which has a user-defined constructor with
one parameter, and thus is this parameter also supplied to the create_instance event. In our example we just
pass on the tank attribute so that the other actors have access to it as well.

In state_2 an event instance_created is expected indicating that the instance is created successfully. After
this the process is repeated for the body actor. If the corresponding instance_created event is received two
start_instance events are send to the object manager to start execution of both actors.

The Body instance doesn’t do much more than keeping track of the user input and adjusting the tank’s posi-
tion and angle accordingly. The Cannon instance does the same for the angle of the cannon, but additionally
enforces reloading time as can be seen in Code Sample 4.2.

<class name="Cannon">

<attribute name="tank" type="PlayerTank"/>

<attribute name="reload_time" type="float"/>

<method name="Cannon">

<parameter type="PlayerTank" name="tank"></parameter >

<body >

self.tank = tank

self.reload_time = tank.getReloadTime()

</body >

</method >

<scxml >

<parallel id="container">

<state id="rotating" initial="none">

<state id="none">

42

<transition port="input" event="cannon -left -pressed" target="../left"/>

<transition port="input" event="cannon -right -pressed" target="../right"/>

</state >

<state id="left">

<transition port="input" event="cannon -left -released" target="../none"/>

<transition port="input" event="cannon -right -pressed" target="../both"/>

<transition port="engine" event="update" target=".">

<script >

self.tank.turnCannonLeft()

</script >

</transition >

</state >

<state id="both">

<transition port="input" event="cannon -left -released" target="../right"/>

<transition port="input" event="cannon -right -released" target="../left"/>

</state >

<state id="right">

<transition port="input" event="cannon -left -pressed" target="../both"/>

<transition port="input" event="cannon -right -released" target="../none"/>

<transition port="engine" event="update" target=".">

<script >

self.tank.turnCannonRight()

</script >

</transition >

</state >

</state >

<state id="shoot" initial="hold">

<state id="hold">

<transition port="input" event="shoot -pressed" target="../shoot">

<raise event="shoot"/>

</transition >

</state >

<state id="shoot">

<transition port="input" event="shoot -released" target="../hold"/>

<transition event="loaded" target=".">

<raise event="shoot"/>

</transition >

</state >

</state >

<state id="ammo" initial="loaded">

<state id="loaded">

<transition event="shoot" target="../unloaded">

<script >

self.tank.shoot()

</script >

<raise port="gui" event="reloading"/>

43

</transition >

</state >

<state id="unloaded">

<transition after="SELF.reload_time" target="../loaded">

<raise event="loaded"/>

<raise port="gui" event="loaded"/>

</transition >

</state >

</state >

</parallel >

</scxml >

</class >

Code Sample 4.2: The Cannon component of the player-controlled tank model.

Figure 4.3: Visual representation of Code Sample 4.2

4.2 Computer-Controlled Tank

The model for the NPC is based on the findings in Model-based Design of Computer-Controlled Game
Character Behavior [JK07]. They propose a layered architecture, as can be seen in figure 4.4. Input arrives
at the sensors layer and output is generated in the actuators. These two layers have the lowest level of
abstraction, they closely correspond to the actual components of the NPC. The center layers on the other
hand model the high-level goal of the NPC. They adjust state based on the received events from the upper
layers, while generating events in order to achieve the current goal.

44

Figure 4.4: The layered architecture used to model the tank NPC.

As in the previous section we’ll look at the different classes in the model separately and each time provide
the relevant part of the XML file that forms the model. Since the default actor is similar to the one of
the player-controlled tank model - it only differs in the number of instances that have to be created and
associated - we will skip it and start with the sensors and work our way down the hierarchy to the actuators.

The radar component (see Code Sample 4.3) is a sensor that will announce the position of the closest
enemy, if there is one in the range of the tank. The very trivial state chart starts in the no_enemy state and
continuously checks for a present enemy using the defined member function isEnemyVisible() as guard.
If the latter evaluates positively then the transition to enemy_in_sight is triggered. Once in that state, the
component will recheck the position of the enemy tank for every update it receives from the engine port. If
an enemy tank is still visible the updated position is send to the enemy tracker, otherwise the transition to
no_enemy is fired.

<class name="Radar">

<attribute name="tank" type="PlayerTank"/>

<attribute name="range" init -value="2000"/>

<relationships >

<association class="EnemyTracker" name="enemy_tracker" min="1" max="1"/>

<association class="PilotStrategy" name="pilot_strategy" min="1" max="1"/>

</relationships >

<method name="Radar">

<parameter type="AITank" name="tank"/>

<body >

self.tank = tank

</body >

</method >

<method name="isEnemyVisible" type="bool">

<body >

45

sighted_list = self.tank.field.getSightedEnemies(self.tank , self.range)

if len(sighted_list) > 0 :

return True

return False

</body >

</method >

<method name="getEnemyPos" type="bool">

<body >

sighted_list = self.tank.field.getSightedEnemies(self.tank , self.range)

if len(sighted_list) > 0 :

sighted_list.sort(key=lambda x: x[1])

return sighted_list [0][0]

else :

return (-1,-1)

</body >

</method >

<scxml initial="no_enemy">

<state id="no_enemy">

<transition cond="SELF.isEnemyVisible()" target="../enemy_in_sight">

<raise event="enemy_sighted" target="enemy_tracker">

<parameter expr="SELF.getEnemyPos()"/>

</raise >

<raise event="enemy_sighted" target="pilot_strategy">

<parameter expr="SELF.getEnemyPos()"/>

</raise >

</transition >

</state >

<state id="enemy_in_sight">

<transition cond="not SELF.isEnemyVisible()" target="../no_enemy">

<raise event="enemy_out_of_sight" target="enemy_tracker"/>

</transition >

<transition event="update" port="engine" cond="SELF.isEnemyVisible()"

target=".">

<raise event="enemy_pos" target="enemy_tracker">

<parameter expr="SELF.getEnemyPos()"/>

</raise >

</transition >

</state >

</scxml >

</class >

Code Sample 4.3: The Radar actor is responsible for announcing the position of any tank it notices.

In Code Sample 4.4 we see a memorizer responsible for tracking the enemy’s position using the infor-

46

Figure 4.5: Visual representation of Code Sample 4.3

mation received from the radar. Once an enemy_pos event is received the state chart advances to the
enemy_pos_known state and saves the position, which is supplied as parameter to the received event, in the
enemy_pos attribute. For every subsequent enemy_pos event, the position is compared using the hasEne-

myMoved() method. If the position has changed significantly, an enemy_pos_changed event is cast to the
attack planner and the memorized position is updated.

Upon receipt of an enemy_out_of_sight from the radar, the state enemy_pos_unsure is entered. While in
this state, the current saved position is the position where the enemy tank was last seen before disappearing.
Remembering this position is useful as it can be used to look for and hunt down the enemy. It is however
no longer relevant once a destination_reached event has been received from one of the upper layers. In this
case the no_enemy state will be entered after sending an enemy_lost event to the attack planner.

<class name="EnemyTracker">

<attribute name="enemy_pos" type="Position"/>

<relationships >

<association class="PilotStrategy" name="pilot_strategy" min="1" max="1"/>

<association class="AttackPlanner" name="attack_planner" min="1" max="1"/>

</relationships >

<method name="hasEnemyMoved">

<parameter name="new_position"/>

<body >

return new_position != self.enemy_pos

</body >

</method >

<scxml initial="no_enemy">

<state id="no_enemy">

<transition event="enemy_sighted" target="../enemy_pos_known">

<parameter name="enemy_position"/>

<script >

self.enemy_pos = enemy_position

47

</script >

</transition >

</state >

<state id="enemy_pos_known">

<transition event="enemy_pos" cond="SELF.hasEnemyMoved(position)" target=".">

<parameter name="position"/>

<script >

self.enemy_pos = position

</script >

<raise event="enemy_pos_changed" target="attack_planner">

<parameter expr="SELF.enemy_pos"/>

</raise >

</transition >

<transition event="enemy_out_of_sight" target="../enemy_pos_unsure">

<raise event="enemy_out_of_sight" target="attack_planner"/>

</transition >

</state >

<state id="enemy_pos_unsure">

<transition event="destination_reached" target="../no_enemy">

<raise event="enemy_lost" target="pilot_strategy"/>

</transition >

<transition event="enemy_sighted" target="../enemy_pos_known">

<parameter name="position"/>

<script >

self.enemy_pos = position

</script >

</transition >

</state >

</scxml >

</class >

Code Sample 4.4: The EnemyTracker actor is responsible for tracking the enemy’s position using the
information received from the radar.

The Pilot Strategy component seen in Code Sample 4.5 is a strategic decider. It chooses which of the two
available strategies - exploring or attacking - should be followed. The NPC starts in the exploring state
(casting an explore event to the Explore Planner upon entering) and transitions to the attacking state upon
receiving the enemy_sighted event from the Radar. The state chart will return to the exploring state if the
Enemy Tracker casts an enemy_lost event.

<class name="PilotStrategy">

<relationships >

<association class="ExplorePlanner" name="explore_planner" min="1" max="1"/>

<association class="AttackPlanner" name="attack_planner" min="1" max="1"/>

</relationships >

48

Figure 4.6: Visual representation of Code Sample 4.4

<scxml initial="exploring">

<state id="exploring">

<onentry >

<raise event="explore" target="explore_planner"/>

</onentry >

<onexit >

<raise event="stop_exploring" target="explore_planner"/>

</onexit >

<transition event="enemy_sighted" target="../attacking">

<parameter name="position"/>

<raise event="attack" target="attack_planner">

<parameter expr="position"/>

</raise >

</transition >

</state >

<state id="attacking">

<onexit >

<raise event="stop_attacking" target="attack_planner"/>

</onexit >

<transition event="enemy_lost" target="../exploring">

</transition >

</state >

</scxml >

</class >

Code Sample 4.5: The PilotStrategy actor decides which strategy the NPC should follow.

For both of the strategies a separate tactical decider is present in our model. On the one hand there’s an
explore planner which will simply generate a new destination (if the NPC resides in exploring mode) each
time there’s no pending destination for the NPC. On the other hand we have the attack planner which is
shown in Code Sample 4.6. The planner expects an attack event to supply an enemy position. It forwards

49

Figure 4.7: Visual representation of Code Sample 4.5

this position to the path finder as new destination and to the turret steering as target to aim for. In the
orthogonal component action both the movement of the tank and the shooting of the turret is controlled
simultaneously. New destinations are set if needed and when the enemy gets out of sight, the planner
informs the turret steering component to interrupt aiming. In the shooting state we see that after firing a
shot, it takes 0.5 seconds to reload.

<class name="AttackPlanner">

<relationships >

<association class="TurretSteering" name="turret_steering" min="1" max="1"/>

<association class="PathFinder" name="path_finder" min="1" max="1"/>

<association class="TurretControl" name="turret_control" min="1" max="1"/>

</relationships >

<scxml initial="idle">

<state id="idle">

<transition event="attack" target="../action">

<parameter name="enemy_pos"/>

<raise event="new_destination" target="path_finder">

<parameter expr="enemy_pos"/>

</raise >

<raise event="aim_at" target="turret_steering">

<parameter expr="enemy_pos"/>

</raise >

</transition >

</state >

<parallel id="action">

<transition event="stop_attacking" target="../idle">

<raise event="stop_aiming" target="turret_steering"/>

</transition >

<state id="movement">

<state id="following">

<transition event="enemy_pos_changed" target=".">

50

<parameter name="enemy_pos"/>

<raise event="new_destination" target="path_finder">

<parameter expr="enemy_pos"/>

</raise >

<raise event="aim_at" target="turret_steering">

<parameter expr="enemy_pos"/>

</raise >

</transition >

<transition event="enemy_out_of_sight" target=".">

<raise event="stop_aiming" target="turret_steering"/>

</transition >

</state >

</state >

<state id="shooting" initial="loaded">

<state id="loaded">

<transition event="ready_to_shoot" target="../reloading">

<raise event="shoot" target="turret_control"/>

</transition >

</state >

<state id="reloading">

<transition after="0.5" target="../loaded"/>

</state >

</state >

</parallel >

</scxml >

</class >

Code Sample 4.6: The AttackPlanner component is responsible for instructing the NPC when in attack
mode.

Figure 4.8: Visual representation of Code Sample 4.6

Another strategic decider can be seen in Code Sample 4.7. The PathFinder translates destinations, requested

51

by one of the strategy planners, into a path of way-points. In the default idle state, the component either
expects a waypoint_reached event or a new_ destination event. If the latter is the case and the PathFinder

decides, using its requiresNewPath() method, that the newly received destination is sufficiently different
than the last destination (if any) for which a path was set, then a new set of way points is calculated and
the check_points state is entered. In this state either the next way-point is send to the Steering actor or a
destination_reached event is broadcast if no more way-points are left.

<class name="PathFinder">

<attribute name="waypoints" init -value="[]"/>

<attribute name="destination" init -value="(-1,-1)"/>

<attribute name="map"/>

<attribute name="tank" />

<relationships >

<association class="Steering" name="steering" min="1" max="1"/>

</relationships >

<method name="PathFinder">

<parameter type="AITank" name="tank"/>

<parameter type="AIMap" name="aimap"/>

<body >

self.tank = tank

self.map = aimap

</body >

</method >

<method name="calculatePath">

<body >

return self.map.calculatePath(self.tank.getPosition(), self.destination)

</body >

</method >

<method name="requiresNewPath">

<parameter name="new_destination"/>

<body >

return self.map.calculateCell(self.destination) !=

self.map.calculateCell(new_destination)

</body >

</method >

<method name="morePoints">

<body >

return len(self.waypoints) > 0

</body >

</method >

<scxml initial="idle">

<state id="idle">

<transition event="waypoint_reached" target="../check_points"/>

<transition event="new_destination" cond="SELF.requiresNewPath(destination)"

target="../check_points">

52

<parameter name="destination"/>

<script >

self.destination = destination

self.waypoints = self.calculatePath()

</script >

</transition >

</state >

<state id="check_points">

<transition cond=" SELF.morePoints()" target="../idle">

<script >

next_waypoint = self.waypoints.pop(0)

</script >

<raise event="new_waypoint" target="steering">

<parameter expr="next_waypoint"/>

</raise >

</transition >

<transition cond="not SELF.morePoints()" target="../idle">

<raise event="destination_reached" scope="broad"/>

</transition >

</state >

</scxml >

</class >

Code Sample 4.7: The PathFinder translates destinations into a path of way-points.

Figure 4.9: Visual representation of Code Sample 4.7

Two executors are present in the model that translate the high level commands received from the strategic
layers into events that the actuators can understand. While the TurretSteering component is responsible
for generating events for the TurretControl actuator, the Steering executor will cast events mainly to the
MotorControl component. In Code Sample 4.8 we see that the TurretSteering saves the target position it
received with the aim_at event. For every time interval defined by the NPC’s reaction speed, the angle
between the tank and target is calculated and events are generated to adjust the tank’s angle with as goal to

53

directly face the target.

<class name="TurretSteering">

<attribute name="reaction_time" init -value="0.05"/>

<attribute name="tank"/>

<attribute name="margin"/>

<atribute name="target" init -value="(-1,-1)"/>

<method name="TurretSteering">

<parameter type="AITank" name="tank"/>

<body >

self.tank = tank

self.margin = tank.cannonSpeed * D1

</body >

</method >

<relationships >

<association class="TurretControl" name="turret_control" min="1" max="1"/>

<association class="AttackPlanner" name="attack_planner" min="1" max="1"/>

</relationships >

<method name="pointRight">

<body >

goal_angle = self.tank.angleToDest(self.target)

diff = (self.tank.cannonAngle - goal_angle) % D360

if diff >= self.margin and diff <= math.pi:

return True

return False

</body >

</method >

<method name="pointLeft">

<body >

goal_angle = self.tank.angleToDest(self.target)

diff = (goal_angle - self.tank.cannonAngle) % D360

if diff >= self.margin and diff <= math.pi:

return True

return False

</body >

</method >

<method name="pointCorrect">

<body >

goal_angle = self.tank.angleToDest(self.target)

diff = math.fabs(goal_angle - self.tank.cannonAngle)

if diff < self.margin or diff > (D360 - self.margin):

54

return True

return False

</body >

</method >

<scxml initial="idle">

<state id="idle">

<transition event="aim_at" target="../aiming">

<parameter name="target"/>

<script >

self.target = target

</script >

</transition >

</state >

<state id="aiming" initial="adjust">

<transition event="stop_aiming" target="../idle">

<raise event="stop_turning" target="turret_control"/>

</transition >

<transition event="aim_at" target=".">

<parameter name="target"/>

<script >

self.target = target

</script >

</transition >

<state id="adjust">

<transition cond="SELF.pointRight()" target="../wait">

<raise event="turn_right" target="turret_control"/>

</transition >

<transition cond="SELF.pointLeft()" target="../wait">

<raise event="turn_left" target="turret_control"/>

</transition >

<transition cond="SELF.pointCorrect()" target="../wait">

<raise event="stop_turning" target="turret_control"/>

<raise event="ready_to_shoot" target="attack_planner"/>

</transition >

</state >

<state id="wait">

<transition after="SELF.reaction_time" target="../adjust"/>

</state >

</state >

</scxml >

</class >

Code Sample 4.8: The TurretSteering actor generates events for the TurretControl actuator.

55

Figure 4.10: Visual representation of Code Sample 4.8

The model contains two actuators, one for the motor and one for the turret. Since they are very similar, we
only look into the TurretControl class which can be seen in Code Sample 4.9. As the actuators are responsi-
ble for executing the actions they received from the upper layers, they should have access to the tank object
they need to adapt and hence this object should be supplied as parameter for the constructors. Since move-
ment doesn’t happen continuously but in discrete steps, the actuator components only execute a movement
action on the receipt of an update event from the environment through the engine port. What action should
be executed is determined by the current state of the components’ state chart, which in turn depends on the
events they received from the upper layers. For example after processing the event turn_right, the current
state will be turning_right. If subsequently an update event is received, the turnTurretRight() method is
called on the tank which will adapt the angle of the turret.

<class name="TurretControl">

<attribute name="tank"/>

<method name="TurretControl">

<parameter type="AITank" name="tank"/>

<body >

self.tank = tank

</body >

</method >

<scxml >

<parallel id="turret">

<state id="rotation" initial="none">

<state id="none">

<transition event="turn_right" target="../turning_right"/>

<transition event="turn_left" target="../turning_left"/>

</state >

<state id="turning_left">

<transition event="stop_turning" target="../none"/>

56

<transition event="turn_right" target="../turning_right"/>

<transition event="update" port="engine" target=".">

<script >

self.tank.turnTurretLeft()

</script >

</transition >

</state >

<state id="turning_right">

<transition event="stop_turning" target="../none"/>

<transition event="turn_left" target="../turning_left"/>

<transition event="update" port="engine" target=".">

<script >

self.tank.turnTurretRight()

</script >

</transition >

</state >

</state >

<state id="shooting">

<state id="polling">

<transition event="shoot" target=".">

<script >

self.tank.shoot()

</script >

</transition >

</state >

</state >

</parallel >

</scxml >

</class >

Code Sample 4.9: The TurretControl actor which is responsible for executing the actions related to the
turret of the tank.

Figure 4.11: Visual representation of Code Sample 4.9

57

5
Conclusion and Future Work

Our extensive example confirms the statements made in [JK07] and [DKVV11] that Statecharts and its
variants are a viable option to define the behaviour of Non-Playable Characters. What’s more interesting
however are the benefits of the class diagram features added to the formalism. Not only does it make the
integration of compiled models into test environments easier and more straight forward, our strictly imposed
rules and the conformance to the actor model makes it more reliable and deadlock proof.

As for future work, the most straight forward thing to do is improving the compiler to make Statecharts a
viable option performance-wise. Regarding the modelling of AI, our goal is to convince the game industry
that this technique is worth investing in. This has to be done by building a proof of concept in a commercial
game engine, to show that it is applicable in every environment. Furthermore, it would be a good idea to
let two groups of people build the same AI. One group would make use of the SCCDXML formalism while
the other group would rely solely on a programming language. This way we can compare the results and
see which technique produced the best AI within the same budget.

58

Bibliography

[BAA+13] Jim Barnett, Rahul Akolkar, RJ Auburn, Michael Bodell, Daniel C. Burnett, Jerry Carter, Scott
McGlashan, TorbjÃűrn Lager, Mark Helbing, Rafah Hosn, T.V. Raman, Klaus Reifenrath,
No’am Rosenthal, and Johan Roxendal. State chart xml (scxml): State machine notation for
control abstraction. http://www.w3.org/TR/scxml/, 2013. Accessed: 2013-08-02.

[CD99] James Clark and Steve DeRose. Xml path language. W3C Recommendation, 1999.

[Cla99] James Clark. Xsl transformations (xslt). W3C Recommendation, 1999.

[DH96] Amnon Naamad David Harel. The statemate semantics of statecharts. ACM Trans. Softw. Eng.

Methodol., 5(4):293 – 333, 1996.

[DH04] Hillel Kugler David Harel. The rhapsody semantics of statecharts. Lecture Notes in Computer

Science, 8(3147):325 – 354, 2004.

[DKVV11] Christopher Dragert, Jörg Kienzle, Hans Vangheluwe, and Clark Verbrugge. Generating extras:
Procedural ai with statecharts. Technical report, Technical Report SOCS-TR-2011.1, 2011.

[Har87] David Harel. Statecharts : a visual formalism for complex systems. Science of Computer

Programming, 8(3):231 – 274, 1987.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism for
artificial intelligence. In Proceedings of the 3rd International Joint Conference on Artificial

Intelligence, IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann
Publishers Inc.

[JK07] Hans Vangheluwe Jörg Kienzle, Alexandre Denault. Model-based design of computer-
controlled game character behavior. Lecture Notes in Computer Science, 4735, 2007.

[OMG05] OMG. Uml 2.0 superstructure specification. Technical report, Object Management Group,
2005.

59

http://www.w3.org/TR/scxml/

	Abstract
	List of Figures
	List of Code Samples
	The Formalism
	Constructs
	Statechart
	Class Diagram

	Concrete Syntax
	Motivation for using XML
	Class Diagram
	Statechart
	Executable Content
	Macros
	State Referencing

	Compiler
	Architecture
	Runtime Platform
	Architecture
	Event Simulation
	Game Loop

	Code Generation
	State Linker
	Path Calculator
	Code Generator

	Test Framework
	Requirements
	Architecture

	Example Case : Tank Wars
	User-Controlled Tank
	Computer-Controlled Tank

	Conclusion and Future Work
	Bibliography

