
CSE 322 mips-verilog.1 Kogge, ND, 12/5/2007 3/7/08

An Example Verilog Structural Design:
An 8-bit MIPS Processor

Peter M. Kogge

Using design “mips.v” by Neil Weste and David Harris

in “CMOS VLSI Design, 3rd Ed”

with code as found at http://www.cmosvlsi.com/

under the “Spice and Verilog code” link

CSE 322 mips-verilog.2 Kogge, ND, 12/5/2007 3/7/08

The ISA (see pp. 39-49 of Weste & Harris)
32 bit instructions as in your text book

Only eight general purpose registers $0 to $7
Each register only 8 bits
$0 is hardwired to 00000000

PC is also only 8 bits wide

All data accesses are only 8 bits, not 32 bits

Only opcodes:
R format: ADD, SUB, AND, OR, SLT,
I format: ADDI, BEQ, LB, SB
J format: J

NOTE: Code as presented does not implement ADDI!

CSE 322 mips-verilog.3 Kogge, ND, 12/5/2007 3/7/08

The Implementation
Based on Multicycle implementation of Chap. 5 of your text

Memory is 256 words of 8-bits each

Copyright © 2005 Pearson Addison-Wesley. All rights reserved. 1-57

exmemory

Clock

Reset

Orange: inter module connections
Red: signals from “top”

mips

CSE 322 mips-verilog.4 Kogge, ND, 12/5/2007 3/7/08

Modules
top: top level testbench code to configure & test processor

exmemory: 256x8-bit single ported memory
mips: the processor itself

- controller: “behavioral” multi-cycle state machine that generates
control signals

- alucontrol: “behavioral” decodes aluop & funct fields into ALU signals
- datapath: “structural” Datapath design

– flop: 8-bit flip-flop latch always latched on rising clock edge
» Used for all internal staging registers mdr, areg, wrd, res

– flopen: 8-bit flip-flop latch with an enable
» Used for four instruction register pieces ir0, …ir3

– flopenr: 8-bit flip-flop latch with an enable and a reset to zero
» Used for pcreg

– mux2: 2 input 8-bit wide multiplexer
– mux4: 4 input 8-bit wide multiplexer
– alu: alu description
– regfile: 3-port register file description
– zerodetect: logic to detect all zeros in an 8-bit path

CSE 322 mips-verilog.5 Kogge, ND, 12/5/2007 3/7/08

Memory
From outside memory is 256 words of 8-bits each

Separate writedata and memdata ports

Internally 64 words of 32-bits each
Upper 6 bits of adr used to select which word
Lower 2 bits of adr used to select which byte

At initialization, loaded from a file named “memfile.dat”
Whose format is as a “.csv” like file
Where each line in file is contents of a 32-bit word
And each word expressed as 8 hexadecimal digits
With the 1st word going into word[0], the next into word[1], etc

- You do not need to load the whole memory

During operation, it is always “reading” to memdata

Write operation occurs “at” rising edge of clock
adr and writedata presented at same time as memwrite goes to 1

CSE 322 mips-verilog.6 Kogge, ND, 12/5/2007 3/7/08

Top module (similar to “testbench”)
Instantiates the mips core and the exmemory, and
interconnects them

Starts with raising reset to 1 for 22 time units, then
dropping it

Also generates a clock of 10 time unit period

Also includes a load program specific termination test:
If the program ever writes to location 5

- And the data is a “7”, then success
- Else failure

Writing from writedata into the memory occurs on the
rising edge of the clock

CSE 322 mips-verilog.7 Kogge, ND, 12/5/2007 3/7/08

Controller module (Behavioral)
States

FETCH1, FETCH2, FETC3, FETCH4: 4 states to read 32b instruction
DECODE: decode just fetched instruction
MEMADR: computes a memory address
RTYPEEX: execute R-type opcode
RTYPEWR: write result back at end of R-type opcode into reg file
LBRD: read data from memory into core
LBWR: write data just read from memory into reg file
SBWR: write data to memory
BEQEX, JEX: execute states for BEQ or J opcodes
ADDIEX: new state for ADDI implementation

Reset changes state to FETCH1 state

Internal state changes on rising edge of clock

Control signals assume their values starting at rising clock

CSE 322 mips-verilog.8 Kogge, ND, 12/5/2007 3/7/08

State Diagram

Fetch1 Fetch2 Fetch3 Fetch4 Decode

reset

BEQEX JEX
BEQ

J

LB, SB

RT
YP

E

RTYPEEX

RTYPEWR

MEMADR

SBWRLBRD

SBLB

LBWR

ADDIEX*

ADDI

* added for ADDI implementation

CSE 322 mips-verilog.9 Kogge, ND, 12/5/2007 3/7/08

Instruction Cycle Table

DECODE, MEMADR,SBWR,

IFETCH1,IFETCH2,IFETCH3,IFETCH4
7SB

DECODE, RTYPEX,RTYPEWR,

IFETCH1,IFETCH2,IFETCH3,IFETCH4
7SUB

DECODE, RTYPEX,RTYPEWR,

IFETCH1,IFETCH2,IFETCH3,IFETCH4
7SLT

DECODE, RTYPEX,RTYPEWR,

IFETCH1,IFETCH2,IFETCH3,IFETCH4
7OR

DECODE, MEMADR,LBRD,LBWR,

IFETCH1,IFETCH2,IFETCH3,IFETCH4
8LB

DECODE, BEQEX,IFETCH1,IFETCH2,IFETCH3,IFETCH46J

DECODE, BEQEX,IFETCH1,IFETCH2,IFETCH3,IFETCH46BEQ

DECODE, RTYPEX,RTYPEWR,

IFETCH1,IFETCH2,IFETCH3,IFETCH4
7AND

DECODE, ADDIEX,RTYPEWR,

IFETCH1,IFETCH2,IFETCH3,IFETCH4
7ADDI

DECODE, RTYPEX,RTYPEWR,

IFETCH1,IFETCH2,IFETCH3,IFETCH4
7ADD

Cycles (Starting with DECODE)# CyclesOpcode

CSE 322 mips-verilog.10 Kogge, ND, 12/5/2007 3/7/08

Data Flow

rf

cl
k

re
gw

rit
e

ir0 ir1 ir2 ir3clk

ra
1

ra
2

ar
eg

w
rd

rd1

rd2

cl
k

cl
k

a

writedata

sr
c1

m
ux

pc

src1

al
ur

sc
a

sr
c2

m
ux

alurscb

1

instr[7:0]

instr[5:0],00

src2

alu re
s

aluresult

alucontrol

al
uc

on
t

al
uo

p

al
uo

utw
dm

uxm
dr

cl
k

m
em

da
ta

md

memtoreg

pc
m

ux 0
instr[5:0],00

pc

nextpc

clkresetpcen

pc
so

ur
ce

w
rit

ed
at

a

ad
rm

ux

ad
r

iord

wd

regmux

wa

regdst

register mux
blue=control-signal

orange=memory signal

cl
k

0

1

0 1

instr[18:16] instr[[13:11]

1

1

0

0

0

0

1

1

2
3

2

3

CSE 322 mips-verilog.11 Kogge, ND, 12/5/2007 3/7/08

Register File module
2 read, 1 write port

Always reading on read ports
I.e. change the register address on ra1 or ra2 and rd1, rd2
change immediately

Writing occurs at rising edge of clock
if regwrite signal is active

CSE 322 mips-verilog.12 Kogge, ND, 12/5/2007 3/7/08

Datapath module
Instruction register implemented as 4 8-bit latches

ir0, … ir3
Loaded sequentially during IFETCH

pcreg:
Reset to zero on a reset high
Loaded from pcmux
ALU used to increment pc

Includes internal staging latches (store on rising edge)
areg: capture output of read port 1 of reg file
wrd: capture output of read port 2 of reg file
res: capture output of alu
mdr: capture read data output from memory

