Lab session Data Representation

Group A: October 23, 2009
Group B: October 20, 2009

Work in the given groups of two. Submit your solutions to the respective assignment on Blackboard. The file name is:
s03_s0XXXXX_s0XXXXX.tar.gz
One of the group members commits your solution. Keep an eye on the deadline (see Blackboard)!

1 Exercises

Convert the numbers. Mind overflow.

1. Convert manually the number $83_{\text {ten }}$:

base 10	83
base 16 (hexadecimal)	
base 8 (octal)	
base 5	
base 2 (binary)	
binary coded decimal	
unsigned integer $(8$ bit)	
signed magnitude $(8$ bit)	
one's complement $(8$ bit)	
two's complement $(8$ bit $)$	
biased excess $128(8$ bit)	
biased excess $127(8$ bit) $)$	

2. Convert manually the number $-344_{\text {five }}$:

base 10	
base 16 (hexadecimal)	
base 8 (octal)	-344
base 5	
base 2 (binary)	
binary coded decimal	
signed magnitude (8 bit)	
one's complement (8 bit)	
two's complement (8 bit)	
biased excess 128 (8 bit)	
biased excess $127(8$ bit $)$	
fixed-point $\left(16\right.$ bit) ${ }^{(1)}$	
normalized fixed-point $(16 \text { bit) })^{(2)}$	
IEEE-754 single precision	

3. Convert manually the number $-121.34375_{\text {ten }}$:

fixed-point $\left(16\right.$ bit) $^{(1)}$	
normalized fixed-point $(16 \text { bit })^{(2)}$	
IEEE- 754 single precision	

4. What is the number in IEEE-754 that follows the number (i.e. the nearest larger number): 00000000100000000000000000000000
5. Convert 0.1 to IEEE- 754 double precision (64 bit). What is going wrong and why?
${ }^{(1)}$ In the following form: iiiiiiiifffffffff with iiiiiiii a two's complement representation of the integer part and fffffffft the representation of the fraction.
${ }^{(2)}$ In the following form: normalized base 8 format, seeeeeefffffffff with s the sign, eeeeee a two's complement representation of the exponent, and fffffffff the 3 -digit base 8 representation of the fraction.

2 Project

There is no project this week. You only have to submit your solutions to the exercises. There will be no feedback loop on this lab session.

