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Causal Block Diagram Models� Ballistic Problem� Lorenz Equations

Exporting� Export to LATEX� Export to MatLab

Time-Slicing Simulator� Graph algorithms� Simulator� Results� Study case: the ballistic problem

Requirements for the assignment are described on the assignment web page. The
whole solution can be downloaded here (just untar in ATOM3.asgn).

The circle test model is given with the assignment. As required, we built a CBD for
the ballistic problem. We also built a CBD for the Lorenz equations (not required —
for testing purposes).

Our CBD for the ballistic problem can be found here. Whether or not this model can
be simulated by your Time-Slicing simulator depends on how your simulator processes
Generic blocks. The angle (block marked
theta) is in radians.
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Figure 1: CBD for the Ballistic Problem

We also developped a CBD for the Lorenz Equations (this was not required). The
model can be found here.

Algorithms to export to LATEX or to a MatLab (or Octave) m-file are very similar: both
files EXPORT LaTeX.py and EXPORT Mfile.py import the module Traversal.py.

In Traversal.py are 2 functions that allow to traverse the graph backward from a
given connector, building a string summary of the traversal on the way. A boolean flag
in those functions specifies which format we are interested in (LATEX or m-file).

A few remarks on the exporting algorithms:� Only CBD of ODEs can be exported, i.e., the model must have at least one
integrator block.� As opposed to the Time-Slicing simulator, the exporting algorithms do not check
for the presence of algebraic loops. Note that algebraic loops should not be a
problem when we only want to generate a LATEX representation.� For the algorithms to work, each integrator block must have a non empty block name
attribute..� The algorithms assume—but don’t verify—that the blocks’ block name attributes
are unique.
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Figure 2: CBD for the Lorenz Equations
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� Time blocks are not processed correctly. This is a problem only if an integrator
block depends on a time block (i.e., nonautonomous systems).

The function EXPORT LaTeX.exportLaTeX identifies all integrator blocks in the model.
For each of these blocks, it calls Traversal.traverse on the input connector to
build the ODE, and on the IC connector to build the initial conditions. In this case,
Traversal.traverse’s recursion stops when either:� Another integrator block is found� A constant block is found� A block with a non empty block name attribute is found

In the last case, the block found is appended to a list blockList so it can be processed
later.

Exporting the ballistic model generates the file

\documentclass[12pt]{article}
\begin{document}

\[
\left\{

\begin{array}{ll}
\dot{v_x} = 0.0, & v_x(t_0) = v_{x,0}\\
\dot{v_y} = -(g) , & v_y(t_0) = v_{y,0}\\
\dot{x} = v_x, & x(t_0) = x_0\\
\dot{y} = v_y, & y(t_0) = y_0\\
\\
v_{x,0} = cos(\theta)\cdot V\\
\theta = 0.7854\\
V = 20.0\\
g = 9.81\\
v_{y,0} = V\cdot sin(\theta)\\
x_0 = 0.0\\
y_0 = 2.0\\

\end{array}
\right.

\]

\end{document}
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This gives: �������������������� �������������������

v̇x � 0 � 0 � vx � t0 	
� vx � 0
v̇y ���� g 	 � vy � t0 	
� vy � 0
ẋ � vx � x � t0 	�� x0

ẏ � vy � y � t0 	�� y0

vx � 0 � cos � θ 	�� V
θ � 0 � 7854
V � 20 � 0
g � 9 � 81
vy � 0 � V � sin � θ 	
x0 � 0 � 0
y0 � 2 � 0

Even though the CBD for the model does not show it, the two product blocks have
a name. Removing these names in the model will have an impact on its “denotational
semantics”.

As in the previous case, the function EXPORT Mfile.exportMfile identifies all inte-
grator blocks in the model, and calls Traversal.traverse on the input connector to
build the ODE, and on the IC connector to build the initial conditions. Traversal.traverse’s
recursion stops when either:� Another integrator block is found� A constant block is found

To each integrator block must be assigned a unique integer that will be used as
a vector index in MatLab. The dictionnary lookUp maps the integrator names to the
corresponding indexes.

Note that the ODE solvers are different in MatLab and Octave. The m-file gener-
ated by our algorithm is to be used with MatLab. In MatLab, the function for the ODE
itself must be in a dedicated file. The initial conditions and the initial/final times are
passed as parameters to the ODE solver itself. Hence the file we produce cannot be
used as it is by MatLab. We leave it as it is, because we don’t want to create 2 separate
files. The initial condition x0 included in the generated file must be passed as a param-
eter to the ODE solver. In MatLab, the syntax is:
>> [t x] = ode45(’filename’, [t init t final ],x0);
where filename is the name of the m-file. Note that the name of the function is the same
as the filename (minus extension and path). For instance, generating an m-file for the
ballistic problem and saving it under ballistic.m, we will have:

function xdot = ballistic(t, x)
xdot = zeros(4, 1);
xdot(1) = 0.0;
xdot(2) = -(9.81) ;
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Figure 3: Circle Test

xdot(3) = x(1);
xdot(4) = x(2);

x0 = [cos(0.7854)*20.0; 20.0*sin(0.7854); 0.0; 2.0];

Pseudo-code for the time-slicing simulator was given here. Relevant files are:

SIM startResume.py

SIM pause.py

SIM reset.py

MODEL plotWindow.py (not modified)

Graph.py

The current version of the Time-Slicing simulator has some limitations:� Assumes there is only one “Plot” block per model.� No support for “File” blocks: their presence is just ignored.

6



Figure 4: Ballistic Problem (optimal solutions)

Figure 5: Lorenz Equations
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� “Delay” and “Derivative” blocks are not supported: their presence in the model
are interpreted as an error by the simulator.� The current Causal-Block Diagram meta-model still allows invalid models to be
constructed. For instance, a unary operator (e.g., a “Negator” block) might have
many inputs. Also, a “Time” block might have an input. The current simulator
makes some efforts to detect those errors. Ideally, the simulator should not have
to be concerned with the validity of the model.� As required, the simulator stops when it detects strongly-coupled components.

The file Graph.py implements both the topSort (topological sorting) and strongComp
(identification of strongly coupled components) functions.

topSort takes as an input the list of all Block connectors, and returns the same list
sorted in topological order (the sorted dependency graph). A few things to note:� Since the sorted list of connectors is used throughout the simulation, it is not

called from strongComp, but rather from the simulator.� For the dependency graph, the connections of the original model need to be
reversed (a signal on a connector depends on the signals upstream). Hence the
depth-first search is performed “against” the connections in the model.� Dependencies between signals on either side of an integrator block do not show
up in the dependency graph. However, the signal downstream depends on the
signal on the integrator’s IC port.

strongComp takes as an input the sorted dependency graph obtained through topSort
and returns a list of lists, each sublist a set of strongly connected components. Iff the
length of every sublists is 1, then there are no strongly coupled components.� To find strongly-connected components, we process the connectors in reverse

topological order. In other words, the connections are visited in the same direc-
tion as in the model (as opposed to topSort).� Once again, the dependencies between signals on either side of an integrator
block do not show up here. However, the signal on an integrator’s IC port de-
pends on the signal downstream (symmetric to topSort).

The Time-Slicing simulator in implemented in the file SIM startResume.py+, in the
class TS Simulator (replacing the class Generator of the original code). Note that
this class is implemented twice: see below for explanations (only look at the first im-
plementation for now).

The algorithm follows closely the pseudo-code. To support the PAUSE and RESUME
features of the AToM3 environment, the simulator itself is split into two methods:
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initSimul Initialize the time-slicing simulator: Topological sorting, and detection of
algebraic loops.

mainLoop Main simulation loop

The other methods added to class TS Simulator are:

processDelayBlocks Process all delay blocks (integrators). This is the Euler-Cauchy
approximation:

x1 � x0 � h � f � x0 	
with:� x0 – the integrator’s current state (initial block out value value)� x1 – the integrator’s next state (updated block out value value)� h – the time step (model.simul delta t.getValue())� f � x0 	 – the current slope (block tmp value value)

processConnectors Process all connectors in topsort order. The integrator blocks’
IC port is used only at initialisation, i.e. when self.currTime == self.initTime.

sendOutput Send outputs to plotter. A wrapper around TS Simulator.sendPlotter,
itself a wrapper around model.dataSet.append.

We note that algebraic blocks must be processed in different ways:� n-ary blocks: some blocks (Adder, Product) implement n-ary operations. These
blocks need to be reset before every simulation step. Resetting is done in processConnectors
by placing the identity operator for the supported operation (0.0 for addition, 1.0
for multiplication) in the blocks’ block out value attribute.� Generic blocks: Generic blocks are unary functions. The function imple-
mented is stored as a string in the block’s block operator attribute (e.g., ’sin’,
’cos’. . . ). For now, only those functions where fnc(x) is meaningful in Python
are supported (where block operator == ’fnc’, and x is a float).� Clocks: Time blocks can be treated in different ways. Our decision was: when-
ever a connector tries to read a clock’s block out value, the clock gives its
initial value plus the elapsed time (i.e., the current time - the initial time).

The control of the simulation from the AToM3 environment, through the START/RESUME,
PAUSE and RESET buttons, works OK. For this, we needed to modify class SIM startResume.SimulatorThread
(replacing the class GeneratorThread of the original code), and the event function
SIM startResume.startResume. Files SIM reset.py and SIM pause.py needed to
be modified as well, but MODEL plotWindow.py was left untouched.

It is possible that some AToM3 operations result in unexpected behaviours (e.g.,
switching models or modifying a model during a session, leaving AToM3 during a
simulation, playing too much with the plot window. . . )
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Figure 6: Circle Test with ∆t � 0 � 01 (x vs y)

For the circle test problem, the analytical solution should look as a circle in phase
space. However, since we use a simple Euler-Cauchy (first-order) approximation we
expect that our numerical solution in phase space will look more like a spiral. The
bigger the time-step, the more dramatic the effect. The following figures confirm this
(compare with Figure , which was obtained with Runge-Kutta-Fehlberg — fourth order
with embedded fifth order):

To find the optimal solution for the ballistic problem, we hacked the file SIM startResume.py:
the second definition of class TS Simulator is solely dedicated to solve this problem
(we actually pasted and modified the whole original class — this is not elegant, but
faster. . . ). It does several simulations of the ballistic problem, with the initial angle
varying between 0 � 0 � and 90 � 0 � . The simulation now terminates when the height of
the projectile reaches 1. After each simulation we plot, with respect to the angle, both
the length of the simulation and the absolute difference between the projectile distance
and its target distance (i.e., 30.0).

Results are shown below: the horizontal axis is the angle (in degrees). In blue, the
duration of the simulation (multiplied by 6). In red, the absolute difference between
projectile distance and target distance. We see the target is reached when the angle is
approximately 22 � , and 67 � . But the time to reach the target is much smaller in the first
case. This is the solution we were looking for!
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Figure 7: Circle Test with ∆t � 0 � 05 (x vs y)

0 5 10 15 20 25 30 35 40 45 500

2

4

6

8

10

12

14

16

18

20

Figure 8: Ballistic Problem (x vs y, θ � 45 � )
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Figure 9: Lorenz Attractor (x vs z)
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Figure 10: Result for Study Case
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The analytical solution for the ballistic problem can be found to be:

θ � arccos �� 15 � 2g

v ��� g � v2 ��� v4 � 2gv2 � 900g2

��
t � � 2

g
� g � v2 � � v4 � 2gv2 � 900g2 �

where v is the speed, and g is the gravitational acceleration. Hence with g � 9 � 81 and
v � 20, we get θ � � 66 � 75 � � 21 � 34 � 	 , and t � (3.80s, 1.61s). This is consistent with our
experimental results.
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