
DEVS assignment

Fall Term 2003

General Information
� The due date is Wednesday 3rd December 2002, before 23:55.
� Submissions must be done via WebCT. Beware that WebCT’s clock may differ slightly from yours. As

described on the Assignments page, all results must be uploaded to WebCT and accessible from links in
the index.html file. There is no need to upload AToM3.

� The assignment can be made in groups of upto 2 people. It is understood that all partners will understand
the complete assignment (and will be able to answer questions about it).

� Grading will be done based on correctness and completeness of the solution. Do not forget to document
your requirements, assumptions, design, simulation results, conclusions in detail !

� Extensions, if given, will involve extending not only the alotted time, but also the assignment !

The problem
The purpose of this assignment is to model the behaviour of car traffic on a straight stretch of road. This road
is made up of a sequence of small road segments. Each road segment can hold only one car and is hence quite
short (typically 10m as we assume trucks are not allowed on this stretch of road). If more than one car is
present in a road segment, a collision occurs.
The model will consist of a Coupled DEVS model named RoadStretch. This model is made up of of a
concatenation of one Generator Atomic DEVS, followed by a series of RoadSegment Atomic DEVS, and
terminated by a Collector Atomic DEVS as depicted in Figure 1.
The following is a detailed description of the three different Atomic DEVS as well as of the Car, Query and
QueryAck entities sent (as events) between the Atomic DEVS building blocks.

Car

Cars are instances of the Car class and are generated by the Generator Atomic DEVS, passed through the
sequence of RoadSegment Atomic DEVS, and finally end up at the Collector Atomic DEVS.

Generator RoadSegment RoadSegment RoadSegment Collector

Q_send
Q_rack

Q_recv
Q_sack

Q_send
Q_rack

Q_recv
Q_sack

Q_send
Q_rack

Q_recv
Q_sack

Q_send
Q_rack

car_out car_in car_out car_in car_out car_out car_incar_in

L

Figure 1: The Road Stretch

1



The Car class is a container for all the relevant information pertaining to a car. A car has the following attributes
set at instantiation time:

� v pref: the car(driver)’s preferred speed. Whenever adjusting its speed, the car will try to attain this
speed. This speed may not be attained in the current road segment due to a speed limitation (v max) of a
road segment or due to the inability to accelerate or decelerate too much in one road segment. The value
of v pref is, at instantiation time, sampled from a uniform distribution over the range [v pref min,
v pref max[. v pref is a strictly positive real number as are the lower and upper bounds. You should use
Python’s random module which implements pseudo-random number generators for various distributions.

� v pref min: lower bound on v pref.
� v pref max: upper bound (not included in the sampling interval) on v pref.
� dv pos max: the car’s maximum acceleration (velocity increase), in one road segment. A positive num-

ber.
� dv neg max: the car’s maximum deceleration (velocity decrease), in one road segment. A positive num-

ber.
� departure time: the time at which the car leaves the Generator. It is the Generator’s responsibility

to assign this value.

Note how, to keep things simple, dv pos max and dv neg max are not sampled from a distribution and will be
the same for all cars. You are free to extend this and use random values.
Note that if one wished to model the car driver’s quality of vision, one should add a parameter to the Car class
encoding this.
We give the Car class an attribute distance travelled which changes during the course of the simulation
to reflect its changing state. The attribute distance travelled is initialized (at instantiation time) to 0. Each
time a Car object leaves a road segment, distance travelled is incremented with L, the length of that road
segment (not all road segments need to have the same length - note that in this assignment, all road segments do
have the same length of 10m so it would be possible to just count the number of road segments traversed though
that would not be very general). Thus, at each point in simulated time, distance travelled will reflect the
distance the car has travelled, irrespective of the traffic system’s topology.
A Car attribute v will keep track of the car’s current speed.
As shown in Figure 1, a Car instance is output through a Generator’s car out output port. It enters a
RoadSegment through that Atomic DEVS’ car in input port and leaves again through that model’s car out
output port. Finally, the Car instance enters the Collector Atomic DEVS through that model’s car in input
port.

Query and QueryAck

The moment a car enters a new road segment, a Query message (an instance of the Query class) is sent to
the next road segment through the sender road segment’s Q send output port. The receiver road segment will
receive the query through its Q recv input port.
This query is used to model, at a discrete event level of abstraction, the driver’s observation of the next road
segment for the presence of a car. In this discrete event model, where the road segments are the “active”
components (the road segments are modelled as DEVS’, not the cars, which are “passive”), the next road
segment will, after some observation delay observ delay, reply with a QueryAck message (an instance of the
QueryAck class) through its Q sack “query send acknowledgement” output port. The QueryAck message is
received by the Query’s sender on the latter’s Q rack “query receive acknowledgement” input port.
The Query class has no attributes. If the car driver’s vision were modelled, it might carry that information
though.

2



The QueryAck class carries information back about the presence of a car in the next road segment. It contains
the single attribute t until dep. This value indicates how long it will take for the car (if present) to leave the
next road segment. The following values can be returned:

� 0 if there is no car present in the next road segment.
� A positive, non-zero number if there is a car present in the next road segment. This value is calculated

as the length of the next road segment divided by the speed of the car in that road segment at the time
of the query. Note that this is only an approximation. This makes sense as a human observer can also
only approximate the time it will take for the car in the next road segment to leave that segment. Such an
approximation is called “dead reckoning”: it is assumed that the car in the next segment will maintain
the same speed as at the time of the observation. Note also how we are conservative and do not use the
remaining distance to be travelled in the next road segment but rather the full length of the next road
segment.

� A negative number (-1) to denote plus infinity. This value will be returned if the car in the next segment
has velocity 0. This typically occurs when a collision has happened and multiple cars pile up, all with
velocity 0.

Generator

A Generator generates Car instances on its car out output port. The Inter Arrival Time (IAT) of cars is
uniformly distributed over the interval [IAT min, IAT max].
A generator thus has the following parameters:

� IAT min: IAT lower bound.
� IAT max: IAT upper bound.

Note how a Generator has a Q send output port and a Q rack input port exactly like a RoadSegment. You
may ignore this in your implementation. In a more elaborate model however, the Generator would, like a
RoadSegment, look forward at the road segment ahead. If a collision could occur (a car is present in the next
segment and the IAT is shorter than the time for that car to leave the next segment), the generator will delay
producing the next car’s arrival. Note how this strategy is also implemented in a GPSS GENERATE block.
It is the Generator’s responsibility to:

� Assign the car’s v pref by sampling from a uniform distribution over the range [v pref min, v pref max].
� Assign the car’s dv pos max.
� Assign the car’s dv neg max.
� Assign the car’s departure time: the time at which the car leaves the Generator. Note how a DEVS

model has no access to a “global” time (only the DEVS simulator keeps track of this). This global time is
needed to assign to departure time. You must thus add a state variable global time to the Generator
and keep it properly updated (in the internal transition function, using the IAT).

� Assign the car’s initial velocity v. There are several choices possible depending on what kind of stretch
of road we are modelling. If the arrival is from the exit of a parking lot for example, it makes sense to
give all cars initial velocity v=0. If the arrival is from an arbitrary traffic system, one may wish to sample
the arrival velocity from some distribution. Another approximation is to let each car enter at its v pref.
Note how in the latter case, it will never be possible for a car to travel faster than its v pref given the
velocity adaptation scheme we use.

Collector

The Collector is where Cars leave the system. Its main purpose is to collect statistics. In this case, we are
interested in two performance metrics:

3



1. The transit time of each car: the time between departure from a Generator till the arrival in the
Collector. To be able to compute the transit time of each car, the Collectorwill take the difference
between the arrival time and the departure time stored as an attribute in the Car object. Note how a
DEVS model has no access to a “global” time (only the DEVS simulator keeps track of this). This global
time is needed to know the arrival time of a car in the Collector. You must thus add a state variable
global time to the Collector and keep it properly updated (in the external transition function, using
the elapsed time).

2. avg v pref dev, the amount the average speed of each car deviates from that car’s preferred speed.
Each car’s preferred speed is available as an attribute of that car object. The average speed of a car is
computed by dividing the car’s attribute distance travelled by the car’s transit time.

Ideally, we would like as much insight as possible in the distribution of the above performance metrics. For
simplicity, you should however not collect the distribution in a table (as requested in class), but only the average
of these metrics.
Note how unlike a RoadSegment, a Collector does not have a Q recv input port nor a Q sack output port.
This means that Query messages sent from the last RoadSegment will not go anywhere and hence that last
RoadSegment will never receive a QueryAck. This is reasonable as a Collector has an infinite capacity for
collecting cars. The fact that the last RoadSegment will never receive a QueryAck is not a problem. A car
entering that last road segment will just continue at the v old velocity at which it entered the segment. It is
thus scheduled to leave that segment after L / v old.

RoadSegment

A road segment has the following parameters:

� L: the length of the road segment.
� v max: the maximum allowed speed in the road segment. The maximum speed may be due to road

conditions (potholes for example) or due to speed limit road signs. We assume cars will (try to) avoid
speeding.

� observ delay: the time it takes before the road segment replies to a Q send query message received on
its Q recv input port. A reply comes in the form of a QueryAck message through the road segment’s
Q sack “query send acknowledgement” output port. The observ delay models the observation delay
and encodes factors such as the visibility in the observed road segment. Note that we are not modelling
the quality of the car driver’s vision here. observ delay is purely a property of a road segment (and is
not determined by a property of the car/driver).

The RoadSegment Atomic DEVS will have a list cars present as part of its state to keep track of the cars
currently in that road segment. cars present is initialized to [].
The moment a car enters a road segment (at velocity v old, found in the car’s attribute v), that road segment
will first check if there are already cars present. If there are, the arriving car will be added to the cars present
list, and all cars’ velocities v will be set to 0, denoting a collision.
If however, there are no cars present (the list of present cars is empty), the RoadSegment immediately sends a
Query message to the model downstream, via the ouput port Q send.
It also schedules a departure of the car at time L / v old.
Note how there may only be one downstream model as otherwise there would be a choice of where to go. This
should be modelled explicitly in a choice model.

4



v

x

v_old

v_pref

v_max

v_new

t

t

dv_pos_max

L

0

t_until_dep

xi

v

x

v_old

v_pref

v_maxv_new =

t

t

dv_neg_max

L

0

t_until_dep

xi

Figure 2: Adapting speed, no car in road segment ahead

Some elapsed time later, a QueryAck is received interrupting the scheduled departure. During that time, the
car will have travelled a distance xi = elapsed * v old. There still remains a distance remaining x = L
- xi to be travelled to leave the road segment.
Usually, the delay (due to observation time of the next road segment) is very short. If the road segment is
connected to a Collector however, a QueryAck will never be received and the car will leave the road segment
after the scheduled time L / v old.
When a QueryAck is received, the road segment’s external transition will handle it. It will update the distance
still to be travelled, and retrieve from the QueryAck object, the t until dep of the car in the next road segment.
This time will be used locally as t no coll, the minimum time the car must stay in the current road segment
to not collide with the car in the next road segment when leaving. Note how collision may still occur as (1) the
t until dep received in the QueryAck is only an approximation and (2) the car may not be able to slow down
sufficiently within the remaining distance in the current road segment.
Let’s first consider the case where there is no car in the next road segment and the t until dep received in
the QueryAck is thus 0. This case is depicted in Figure reffig:noCarBefore in two examples. As there are no
restrictions on the speed imposed by the next road segment, the car will want to update its speed to its v pref.
However, the car should not exceed the current road segment’s speed limit v max. The new target speed is thus
min(v pref, v max). It may not be possible to attain this target speed due to the maximum velocity changes
dv pos max and dv neg max. The final new speed v new will take this into account. A departure is scheduled

5



v

x

v_old

v_pref

v_max

v_new = v_no_coll

t

t

dv_neg_max

L

0

t_until_dep

xi

v

x

v_old

v_pref

v_max

t

t

dv_neg_max

L

0

t_until_dep

xi

t_no_coll t_no_coll

v_new

Figure 3: Adapting speed, car in road segment ahead

after t until dep = remaining x / v new.
Let’s now consider the case where there is a car in the next road segment and the t until dep received in
the QueryAck is thus a positive number. This case is depicted in Figure reffig:carBefore in two examples. The
special case of a negative number denoting plus infinity is considered later.
Now, we cannot just set the target speed to min(v pref, v max) as that might bring us to the next road
segment too early (i.e., before the car in that segment has left). The time until departure must thus be the
maximum of t no coll (obtained from the QueryAck’s t until dep) and the time it would take to leave
at the intended target speed remaining x / min(v pref, v max). This will require an updated speed of
remaining x / max(t no coll, remaining x / min(v pref, v max)). It may not be possible to reach
this speed however due to the maximum velocity changes dv pos max and dv neg max. The final new speed
v new will take this into account. A departure is scheduled after t until dep = remaining x / v new.
If the car(s) in the next segment is/are standing still, as is the case after a collision, or due to a v max = 0, a
negative number (-1) will be returned as t until dep in the QueryAck. This means that the target speed is 0.
dv neg max will determine whether it is possible to attain this speed. Note how there is nothing special about
this case (compared to the one where the t until dep returned is a positive number).
Note how at any point during the t until dep, the model might be interrupted by a Query from the previous
road segment (or generator) enquiring about the time until departure of the car currently present (if any). You
must make sure to appropriately update t until dep (remember how an external transition forgets about the
remaining time). You may either return in a QueryAck, a conservative dead reckoning estimate L / v or a

6



more accurate estimate based on the updated t until dep.

Simulation
Perform a few simulation experiments. Always choose the simulation duration sufficiently long enough to get
statistically relevant measurements.
Choose some meaningful values for the various parameters to demonstrate the correctness of your model. For
example, make the behaviour deterministic so it is possible to analytically determine the performance metrics.
Discuss your results !

Practical issues
You will use the PythonDEVS simulator found on the MSDL DEVS page.
You need DEVS.py and Simulator.py. Queue.py demonstrates how to model a cascade of processors (of
jobs) in PythonDEVS.
An older version of this example is given in a report. The report gives background information on the imple-
mentation of the DEVS simulator.
Note that in PythonDEVS, when an external transition is triggered, this means that some external input has
arrived on one or more of the ports. Using peek, you can check each of the ports for the presence as in
p = self.peek(self.IN1) in an external transition function with a subsequent check if p == None: to
determine whether the received external input arrived on port self.IN1.

7


