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At a first glance, it is not easy to characterize modelling and simulation. Certainly, a variety of application domains such
as fluid dynamics, energy systems, and logistics management make use of it in one form or another. Depending on the
context, modelling and simulation is often seen as a sub-set of Systems Theory, Control Theory, Numerical Analysis,
Computer Science, Artificial Intelligence, or Operations Research. Increasingly, modelling and simulation integrates all
of the above disciplines. Recently, modelling and simulation has been slated to become the computing paradigm of the
future. As a paradigm, it is a way of representing problems and thinking about them, as much as a solution method. The
problems span the analysis and design of complex dynamical systems. In analysis, abstract models are built inductively
from observations of a real system. In design, models deductively derived from a priori knowledge are used to build a
system, satisfying certain design goals. Often, an iterative combination of analysis and design is needed to solve real
problems. Though the focus of modelling and simulation is on the behaviour of dynamical (i.e., time-varying) systems,
static systems (such as entity-relationship models and class diagrams, described in the Unified Modelling Language UML
[RJB99]) are a limit-case. Both physical (obeying conservation and constraint laws) and non-physical (informational,
such as software) systems and their interactions are studied by means of modelling and simulation.

1 Basic concepts

In the following, an introduction to the basic concepts of modelling and simulation is given.
Figure 1 presents modelling and simulation concepts as introduced by Zeigler [Zei84, ZPK00].

Object is some entity in the Real World. Such an object can exhibit widely varying behaviour depending on the context
in which it is studied, as well as the aspects of its behaviour which are under study.

Base Model is a hypothetical, abstract representation of the object’s properties, in particular, its behaviour, which is valid
in all possible contexts, and describes all the object’s facets. A base model is hypothetical as we will never —in
practice— be able to construct/represent such a “total” model. The question whether a base model exists at all is a
philosophical one.

System is a well defined object in the Real World under specific conditions, only considering specific aspects of its
structure and behaviour.

Experimental Frame When one studies a system in the real world, the experimental frame (EF) describes experimental
conditions (context), aspects, . . . within which that system and corresponding models will be used. As such, the
Experimental Frame reflects the objectives of the experimenter who performs experiments on a real system or,
through simulation, on a model. In its most basic form (see Figure 2), an Experimental Frame consists of two
sets of variables, the Frame Input Variables and the Frame Output Variables, which match the system or model
terminals. On the input variable side, a generator describes the inputs or stimuli applied to the system or model
during an experiment. A generator may for example specify a unit step stimulus. On the output variable side, a
transducer describes the transformations to be applied to the system (experiment) or model (simulation) outputs
for meaningful interpretation. A transducer may for example specify the calculation of the extremal values of some
of the output variables. In the above, output refers to physical system output as well as to the synthetic outputs
in the form of internal model states measured by an observer. In case of a model, outputs may observe internal
information such as state variables or parameters. Apart from input/output variables, a generator and a transducer,
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an Experimental Frame may also comprise an acceptor which compares features of the generator inputs with
features of the transduced output, and determines whether the system (real or model) “fits” this Experimental
Frame, and hence, the experimenter’s objectives.

(Lumped) Model gives an accurate description of a system within the context of a given Experimental Frame. The
term “accurate description” needs to be defined precisely. Usually, certain properties of the system’s structure
and/or behaviour must be reflected by the model within a certain range of accuracy. Note: a lumped model is
not necessarily a lumped parameter model [Cel91]. Due to the diverse applications of modelling and simulation,
terminology overlap is very common.

Experimentation is the physical act of carrying out an experiment. An experiment may interfere with system operation
(influence its input and parameters) or it may not. As such, the experimentation environment may be seen as a
system in its own right (which may in turn be modelled by a lumped model). Also, experimentation involves
observation. Observation yields measurements.

Simulation of a lumped model described in a certain formalism (such as Petri Net, Differential Algebraic Equations
(DAE) or Bond Graph) produces simulation results: the dynamic input/output behaviour. Simulation may use sym-
bolic as well as numerical techniques. Simulation, which mimics the real-world experiment, can be seen as virtual
experimentation, allowing one to answer questions about (the behaviour of) a system. As such, the particular
technique used does not matter. Whereas the goal of modelling is to meaningfully describe a system presenting
information in an understandable, re-usable way, the aim of simulation is to be fast and accurate. Symbolic tech-
niques are often favoured over numerical ones as they allow the generation of classes of solutions rather than just a
single one. For example, Asin

�
x ��� Bcos

�
x � as a symbolic solution to the harmonic equation d2x

dt2 ��� x (with A and B
determined by the initial conditions) is preferred over one single approximate trajectory solution obtained through
numerical simulation. Furthermore, symbolic optimizations have a much larger impact than numerical ones thanks
to their global nature. Crucial to the System–Experiment/Model–Virtual Experiment scheme is that there is a ho-
momorphic relation between model and system: building a model of a real system and subsequently simulating
its behaviour should yield the same results as performing a real experiment followed by observation and codify-
ing the experimental results (see Figure 3). A simulation model is a tool for achieving a goal (design, analysis,
control, optimisation, . . . ) [BO96]. A fundamental prerequisite is therefore some assurance that inferences drawn
from modelling and simulation (tools) can be accepted with confidence. The establishment of this confidence is
associated with two distinct activities; namely, verification and validation.

Verification is the process of checking the consistency of a simulation program with respect to the lumped model it
is derived from. More explicitly, verification is concerned with the correctness of the transformation from some
intermediate abstract representation (the conceptual model) to the program code (the simulation model) ensuring
that the program code faithfully reflects the behaviour that is implicit in the specification of the conceptual model.
A model compiler may automate the transformation from conceptual model to simulation model (code). If this
compiler can be verified, all transformations by the compiler are verified.

Validation is the process of comparing experiment measurements with simulation results within the context of a certain
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Experimental Frame [Bal97]. When comparison shows differences, the formal model built may not correspond to
the real system. A large number of matching measurements and simulation results, though increasing confidence,
does not prove validity of the model however. A single mismatch between measurements and simulation results
invalidates the model. For this reason, Popper has introduced the concept of falsification [Mag85], the enterprise
of trying to falsify or disprove a model. A model may state that water in a pot boils at 100oC. Many experiments
will confirm this model, until either the pot is closed or is taking to a different altitude. A falsified model should
not lead to an outright rejection of the model. Rather, it should lead to a refinement of the model’s experimental
frame on the one hand and to an attempt to expand the model to fit the current experimental frame. In the case of
the water boiling in a pot, a restricted experimental frame would state that the pressure must be constant (1atm).
Expending the model would express the relationship between boiling point and pressure and volume.

Various kinds of validation can be identified; e.g., conceptual model validation, structural validation, and be-
havioural validation. Conceptual validation is the evaluation of a conceptual model with respect to the system,
where the objective is primarily to evaluate the realism of the conceptual model with respect to the goals of the
study. Structural validation is the evaluation of the structure of a simulation model with respect to perceived struc-
ture of the system. Behavioural validation is the evaluation of the simulation model behaviour. An overview of
verification and validation activities is shown in Figure 4. It is noted that the correspondence in generated behaviour
between a system and a model will only hold within the limited context of the Experimental Frame. Consequently,
when using models to exchange information, a model must always be matched with an Experimental Frame before
use. Conversely, a model should never be developed without simultaneously developing its Experimental Frame.
This requirement has its repercussions on the design of a model representation language.

2 The modelling and simulation process

To understand any enterprise, it is necessary to analyze the process: which activities are preformed, what entities are op-
erated on, and what the causal relationships (determining activity order and concurrency) are. A described process gives
insight, a prescribed process can be the basis for automation and implementation of a software tool [Hum89, HK89].
Note how a prescribed process is not necessarily deterministic as it may still leave a large number of decisions to the user.
The importance of studying processes is exemplified by the SEI Capability Maturity Model
(http://www.sei.cmu.edu/cmm/cmms/cmms.html) which assesses the quality of software companies by the level of knowl-
edge, re-use, and optimization of their processes.
The simulation activity is part of the larger model-based systems analysis enterprise. A rudimentary process model for
these activities is depicted in Figure 5. By means of a simple mass-spring experiment example (see Figure 6), the process
will be explained. In this example, a mass sliding without friction over a horizontal surface is connected to a wall via a
spring. The mass is pulled away from the rest position and let go.
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Figure 7: Measurement data

A number of Information Sources (either explicit in the form of data/model/knowledge bases or implicit in the user’s
mind) are used during the process:

1. A Priori Knowledge: in deductive modelling, one starts from general principles –such as mass, energy, momentum
conservation laws and constraints– and deduces specific information. Deduction is predominantly used during
system design. In the example, the a priori knowledge consists of Newton’s second law of motion, as well as our
knowledge about the behaviour of an ideal spring.

2. Goals and Intentions: the level of abstraction, formalisms used, methods employed, . . . are all determined by the
type of questions we want to answer. In the example, possible questions are: “what is a suitable model for the
behaviour of a spring for which we have position measurements ?”, “what is the spring constant ?”, “given a suitable
model and initial conditions, predict the spring’s behaviour”, “how to build an optimal spring given performance
criteria ?”, . . .

3. Measurement data: in inductive modelling, we start from data and try to extract structure from it. This struc-
ture/model can subsequently be used in a deductive fashion. Such iterative progression is typical in systems anal-
ysis. Figure 7 plots the noisy measured position of the example’s mass as a function of time.

The process starts by identifying an Experimental Frame. As mentioned above, the frame represents the experimental
conditions under which the modeller wants to investigate the system. As such, it reflects the modeller’s goals and ques-
tions. In its most general form, it consists of a generator describing possible inputs to the system, a transducer describing
the output processing (e.g., calculating performance measures integrating over the output), and an acceptor describing the
conditions (logical expressions) under which the system (be it real or modelled) match. In the example, the experimental
frame might specify that the position deviation of the mass from the rest position will/may never be larger than 10%
of the rest length of the spring. Environment factors such as room temperature and humidity could also be specified, if
relevant. Based on a frame, a class of matching models can be identified.
Through structure characterization, the appropriate model structure is selected based on a priori knowledge and measure-
ment data. In the example, a feature of an ideal spring (connected to a frictionless mass) is that the position amplitude
stays constant. In a non-ideal spring, or in the presence of friction, the amplitude descreases with time. Based on the
measured data, we conclude this must be an ideal spring.
A suitable model as shown below can be built. Note how the model is non-causal (not specifying which variables are
known and which need to be computed) and contains an assertion encoding the Experimental Frame acceptor.
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Figure 8: Fitted simulation results

CLASS Spring "Ideal Spring": DAEmodel ::=
{
OBJ F_left: ForceTerminal,
OBJ F_right: ForceTerminal,

OBJ RestLength: LengthParameter,
OBJ SpringConstant: SCParameter,

OBJ x: LengthState,
OBJ v: SpeedState,

F_left - F_right = - SpringConstant *
(x - RestLength),

DERIV([ x, [t,] ]) = v,

EF_assert( x - RestLenght < RestLength/100),
},

Subsequently, during model calibration, parameter estimation yields optimal parameter values for reproducing a set of
measurement data. From the model, a simulator is built. Due to the contradicting aims of modelling –meaningful model
representation for understanding and re-use– and simulation –accuracy and speed–, a large number of steps may have
to be traversed to bridge the gap. Using the identified model and parameters, simulation allows one to mimic the system
behavior (virtual experimentation) as shown in Figure 8. The simulator thus obtained can be embedded in for example,
an optimizer, a trainer, or a tutoring tool.
The question remains whether the model has predictive validity: is it capable not only of reproducing data which was used
to choose the model and to identify parameters but also of predicting new behavior ? With every use of the simulator, this
validity question must be asked. The user determines whether validation is included in the process. In a flight simulator,
one expects the model to have been validated. In a tutor, validation by the user may be part of the education process.
In Figure 5, one notices how each step in the modelling process may introduce errors. As indicated by the feedback arrows,
a model has to be corrected once falsified. A desirable feature of the validation process is the ability to provide hints as
to the location of modelling errors [YVV98]. Unfortunately however, very few methods are designed to systematically
provide such information. In practical use, the process is refined and embedded in more general (e.g., tutoring, training,
optimal experimental design, control) processes.
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3 Verification and validation

The presentation of an experimental frame given above enables a rigourous definition of model validity. Let us first
postulate the existence of a unique Base Model. This model is assumed to accurately represent the behavior of the Real
System under all possible experimental conditions. This model is universally valid as the data DRealSystem obtainable from
the Real System is always equal to the data DBaseModel obtainable from the model.

DBaseModel � DRealSystem

A Base Model is distinguished from a Lumped Model by the limited experimental context within which the latter accu-
rately represents Real System behavior.

A particular experimental frame E may be applicable to a real system or to a model. In the first case, the data potentially
obtainable within the context of E are denoted by DRealSystem � E . In the second case, obtainable data are denote by
Dmodel � E . With this notation, a model is valid for a real system within Experimental Frame E if

DLumpedModel � E � DRealSystem � E
The data equality � must be interpreted as “equal to a certain degree of accuracy”.
The above shows how the concept of validity is not absolute, but is related to the experimental context within which
Model and Real System behavior are compared and to the accuracy metric used.

One typically distinguishes between the following types of model validity:

Replicative Validity concerns the ability of the Lumped Model to replicate the input/output data of the Real System.
With the definition of a Base Model, a Lumped Model is replicatively valid in Experimental Frame E for a Real
System if

DLumpedModel � E � DBaseModel � E
Predictive Validity concerns the ability to identify the state a model should be set into to allow prediction of the response

of the Real System to any (not only the ones used to identify the model) input segment. A Lumped Model is
predictively valid in Experimental Frame E for a Real System if it is replicatively valid and

FLumpedModel � E 	 FBaseModel � E
where FS is the set of I/O functions of system S within Experimental Frame E . An I/O function identifies a func-
tional relationship between Input and Output, as opposed to a general non-functional relation in the case of replica-
tive validity.

Structural Validity concerns the structural relationship between the Real System and the Lumped Model. A Lumped
Model is structurally valid in Experimental Frame E for a Real System if it is predictively valid and there exists a

morphism 
� from Base Model to Lumped Model within frame E .

LumpedModel � E 
� BaseModel � E
When trying to assess model validity, one must bear in mind that one only observes, at any time t, DRealSystem

�
t � , a subset

of the potentially observable data DRealSystem. This obviously does not simplify the model validation enterprise.
Whereas assessing model validity is intrinsically impossible, the verification of a model implementation can be done
rigorously. A simulator implements a lumped model and is thus a source of obtainable data DSimulator . If it is possible to
prove (often by design) a structural realtionship (morphism) between Lumped model and Simulator, the following will
hold unconditionally

DSimulator � DLumpedModel

Before we go deeper into predictive validity, the relationship between different refinements of both Experimental Frames
and models is elaborated. In Figure 9, the derived from relationship for Experimental Frames and the homomorphism re-
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lationship for Models are depicted. If we think of an Experimental Frame as a formal representation of the “context within
which the model is a valid representation of the dynamics of the system”, a more restricted Experimental Frame means a
more specific behaviour. It is obvious that such a restricted Experimental Frame will “match” far more models than a more
general Experimental Frame. Few models are elaborate enough to be valid in a very general input/parameter/performance
range. Hence, the large number of “applies to” (i.e., match) lines emanating from a restricted Experimental Frame. The
homomorphism between models means that, when modifying/transforming a model (e.g., adding some non-linear term
to a model), the simulation results (i.e., the behaviour) within the same experimental frame must remain the same.

Though it is meaningful to keep the above in mind during model development and use, the highly non-linear nature
of many continuous models (as used in WEST++) makes it very difficult to “automate” the management of information
depicted in Figure 9. Non-linear behaviour makes it almost impossible, based on a model or experimental frame symbolic
representation, to make a statement about the area in state-space which will be covered (i.e., behaviour). A pragmatic
approach is to

1. let an “expert” indicate what the different relations are. This is based on some “insight” into the nonlinear dynamics.
Such expert knowledge can be built from a large number of conducted experiments.

2. constantly –with each experiment– validate the expert information.

A crucial question is whether a model has predictive validity: is it capable not only of reproducing data which was used
to choose the model and parameters but also of predicting new behavior? The predictive validity of a model is usually
substantiated by comparing new experimental data sets to those produced by simulation, an activity known as model
validation. Due to its special importance in the communication between model builders and users, model validation has
received considerable attention in the past few decades (for a survey, see for example [Bal97]. Problems from general
validation methodologies to concrete testing technologies have been extensively studied. The comparison of the experi-
mental and simulation data are accomplished either subjectively, such as through graphical comparison, Turing test, or
statistically, such as through analysis of the mean and variance of the residual signal employing the standard F statistics,
Hotelling’s T 2 tests, multivariate analysis of variance regression analysis, spectral analysis, autoregressive analysis, auto-
correlation function testing, error analysis, and some non-parametric methods. An excellent presentation of the different
issues as well as a classification of verification, validation, and testing techniques is given by Balci in [Bal97].

As indicated by the feedback arrows in Figure 5, a model has to be corrected once proven invalid. The above mentioned
methods are designed to determine, through comparison of measured and simulated data, the validity of a model. As one
might intuitively expect, different modelling errors usually cause the behavior of the model to deviate in different ways
from that of the real system. Or, in other words, different modelling errors correspond to different “patterns” in the error
signal, the difference between experimental data and simulated data. These “patterns”, if extract-able, can obviously
be used to identify the modelling errors. In the sequel, we present a simple biological process to introduce different
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modelling errors and their unified representation. This representation is the starting point for automated error detection
[YVV98].

3.1 Modelling a biological process

Figure 10 shows a biological denitrification plant, which aims to remove the nitrate as well as the carbon organics
contained in the influent water by means of biological reactions. It consists of two functional units, a bio-reactor and
a settler. In the reactor, which is often completely mixed, heterotrophic biomass is present. It biodegrades the carbon
organics with nitrate as the electron acceptor. The carbon organics and the nitrate are thus both removed. The ‘overflow’
of the reactor, containing the substrate residuals and the sludge flocks (where the biomass resides), flows into the settler.
There, the sludge settles and thus separates itself from the treated water, and is subsequently recycled to the reactor
through the recycling line. In order to prevent the sludge concentration in the reactor from becoming too high due to
its continuous growth in the reactor, surplus sludge is removed from the waste flow (see Figure 10). Models of the
denitrification process usually aim to predict the effluent quality (the amount of carbon organics and nitrate in the effluent)
and the sludge production. This implies that the following three variables are crucial to the model: the carbon organics
concentration, the nitrate concentration, and the biomass concentration. The main biological reaction occurring in the
reactor is known to be,

S � NO �3 � H �
 �r��� X � N2 � CO2 � H2O

where S, NO �3 , H � , X , N2, CO2 and H2O denote, respectively, the carbon organics, nitrate, proton, biomass, nitrogen gas,
carbon dioxide gas and water. r denotes the reaction rate. The “feedback” arrow in the scheme expresses the auto-catalytic
action of the biomass X . As clearly shown in the scheme, the reaction results in the removal of the nitrate and carbon
organics and in the growth of the biomass. Another reactor process is the decay of the biomass which causes the decrease
of the biomass on the one hand and the consumption of the nitrate on the other hand. In the context of modelling the
effluent quality, the a priori knowledge allows one to model the process by making mass balances for the three materials,

Ẋ
�
t � � µ

�
t � X � t � � bX

�
t � � Qw

�
t �

V
X
�
t �

ṠS
�
t � � � 1

YS
µ
�
t � X � t � � Qin

�
t �

V
SS
�
t ��� Qin

�
t �

V
SS � in � t � (1)

ṠNO
�
t � � � 1 � YS

2 � 86YS
µ
�
t � X � t � � 1 � fP

2 � 86
bX
�
t � � Qin

�
t �

V
SNO

�
t ��� Qin

�
t �

V
SNO � in � t �

where X , SS, SNO denote the biomass, the carbon organics and the nitrate concentrations in the bioreactor, respectively;
SS � in and SNO � in denote the carbon organics and the nitrate concentrations in the influent, respectively; Q in is the influent
flow rate; Qw is the waste flow rate; V is the volume of the bioreactor; YS is the yield coefficient; b is the biomass decay
coefficient; fP is the fraction of the inert materials in biomass; µ

�
t � � r

�
t ��� X � t � is the specific biomass growth rate, which

is still to be modelled.
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Experiments show that µ is a nonlinear function of SS and SNO. It has been revealed that µ increases almost linearly with
SS and SNO when they are low, but becomes independent of them when they are high. Several empirical laws have been
proposed to model this relationship. The following double Monod law is commonly used [HGG � 86],

µ
�
t � � µmax

� SS
�
t �

KS � SS
�
t � � � SNO

�
t �

KNO � SNO
�
t � � (2)

where µmax is the maximum specific growth rate, KS and KNO are the so-called half saturation coefficients for the carbon
organics and the nitrate, respectively.

Equation (1), together with equation (2), gives a parametric model of the denitrification process. All the parameters
involved are plant dependent and hence have to be specifically estimated for each individual case based on the data
obtained either from on-site measurements or from laboratory analyses (of on-site samples).

3.2 Different types of modelling errors and their unified representation

Assume that the paramerized model to be validated takes the form,

ẋm
�
t � � fm

�
xm
�
t ��� θm � u � t ��� t � (3)

where xm
�
t ����� n is the state variable vector of the model, u

�
t ����� p is the input vector, and θm is the model parameter

vector, which is known. On the basis of this model, the real behavior of the system can generally be represented as,

ẋr
�
t � � fm

�
xr
�
t ��� θm � u � t ��� t ��� em

�
t � (4)

where xr
�
t ����� n is the state vector of the system, em

�
t ����� n is the modelling error vector. It is assumed in equation

(4) that the real system has the same number of state variables as the model. This representation does not limit the
generality of the representation since the errors introduced by erroneous state aggregations in deriving model (3) can also
be represented by the error term em

�
t � .

In order to make the modelling error identification possible, an appropriate representation of the error term em
�
t � in

equation (4) is required. This representation should be obtained by making use of the a priori knowledge about the
possible modelling errors. Basically, modelling errors may be introduced in each stage of the modelling process as
depicted in Figure 5. In this section, it will be shown, taking the biological model developed in the previous section as
an example, how the a priori knowledge concerning the modelling errors can be obtained through the analysis of the
modelling process and the model itself. The mathematical representation of the modelling errors will also be discussed.
As will be shown in the next section, such a representation allows the identification of the modelling errors based on the
comparison of the observed data with data produced by simulation of the erroneous model.

3.2.1 Modelling Errors due to an improperly defined Experimental Frame

In defining the boundaries of the process or system to be modelled, some important components may be missed, some
significant disturbances to the system may be improperly neglected and so on. All of these introduce errors into the
model. The Experimental Frame is the formalisation of the experimental conditions (inputs applied to the system, outputs
observed, criteria of acceptance, . . . ) and as such the above mentioned modelling errors can be formally expressed as
Experimental Frame errors. For a rigorous treatment, see [Tak96].
For instance, an assumption underlying model (1) is that no other reactions occur in the process which affect the mass
balance of the concerned materials. One knows, however, that this assumption is not valid when dissolved oxygen is
present in the influent. In fact, when dissolved oxygen is fed to the bioreactor, the following reaction, which is called the
aerobic oxidation, will also occur, accompanying the denitrification reaction described in the previous section,

S � O2

 �ro��� X � CO2 � H2O

where ro denotes the oxidation reaction rate. The reaction scheme clearly shows how the aerobic oxidation affects the
mass balance of the carbon organics and the biomass. This will inevitably introduce errors in the prediction of these two
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variables. Since, as shown in model (1), both SS
�
t � and X appear in the equation concerning the dynamics of SNO, the

prediction of the nitrate concentration will be affected indirectly.
A characteristic of the modelling error described above is that it does not directly affect the third equation in model (1).
The above aerobic oxidation introduces an ro term into the first equation of (1) and an 1

YS
ro term into the second equation.

The modelling error term in equation (4) takes the following form,

em � o � t � �! 1 � 1
YS

0 " T ro
�
t � (5)

While  1 � 1
YS

0 " T is apparently a known vector, ro
�
t � is an unknown, time-variant scalar.

3.2.2 Modelling Errors due to an improperly characterized Model Structure

Due to for instance lack of knowledge of the mechanism of the process to be modelled, or due to an oversimplification
of the model, one may assume a wrong model structure. Typical errors include choosing an incorrect number of state
variables or incorrectly assuming non-linear behavior. Structural errors may accidentally be produced through incorrect
choice of parameters (usually, 0), whereby some part of the model structure vanishes, thereby altering the model structure.

For instance, in model (1), there does not exist a fundamental law that precisely characterizes the dependence of the
denitrification reaction rate on the concentrations of the materials. The “laws” which have hitherto been proposed are all
quite empirical. A problem of this type of laws is that they have a limited applicability range. An inappropriate choice
of the “laws” may introduce errors. For example, when the model of the denitrification rate given in equation (2) is not a
good description of the real reaction rate: µr

�
t � � µ

�
t ��� δµs

�
t � , where µr

�
t � is the real specific reaction rate and δµs

�
t � is

the modelling error, the following error term is found by substitution in equation (4),

em � µ � t � �# 1 � 1
YS

� 1 � YS

2 � 86YS
" T δµs

�
t � X � t � (6)

3.2.3 Modelling Errors due to inaccurate estimates of the Model Parameters

Either by improper or inadequate data used for parameter estimation or by ill designed estimation algorithms, one may
use incorrect parameter values. The error terms in equation (4) due to the estimate errors of the parameters in model (1)
are as follows,

modelling error of b
Assuming br � b � δb, where br is the real decay coefficient and δb is the modelling error, one obtains,

em � b � t � �$ %� 1 0 � 1 � fP

2 � 86
" T δbX

�
t � (7)

modelling error of fP
Assuming fP� r � fP � δ fP, where fP� r is the real inert fraction in a biomass cell and δ fP is the modelling error, one
obtains,

em � fP

�
t � �! 0 0 1 " T δ fP

2 � 86
bX
�
t � (8)

modelling error of YS
Assuming 1

YS & r � 1
YS
� δ

� 1
YS
� , where YS � r is the real yield coefficient and δ

� 1
YS
� is the modelling error, one obtains,

em �YS

�
t � �! 0 � 1 � 1

2 � 86
" T δ

� 1
YS
� µ � t � X � t � (9)

modelling errors of µmax, KNO and KS
Assuming µr

�
t � � µ

�
t ��� δµp

�
t � , where µr

�
t � is the real specific reaction rate and δµp

�
t � is the error caused by the

modelling error of µmax, KNO or KS, one obtains,

em � µmax � KNO � KS

�
t � �# 1 � 1

YS
� 1 � YS

2 � 86YS
" T δµp

�
t � X � t � (10)
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One finds that every single modelling error shown above takes the form of a product of a known constant vector and an
unknown time-variant variable. This is not an artifact of this particular example, but is in fact a general property. Usually,
each modelling error affects only a subspace of the n-dimensional state space, and can hence be represented in equation
(4) with a term Fidi

�
t � , where Fi � Rn ' si , di

�
t �(� Rsi . The vectors of Fi span the subspace affected by the concerned

modelling error. Fi is called the feature vector or feature matrix of the modelling error. d i
�
t � represents the magnitude of

the modelling error, and is generally unknown and time-varying. Thus, equation (4) can be rewritten as,

ẋr
�
t � � fm

�
xr
�
t ��� θm � u � t ��� t ��� l

∑
i ) 0

Fidi
�
t � (11)

Since it is usually not possible to predict all possible modelling errors, it is necessary to include a special feature matrix,
say F0, in equation (11) to represent modelling errors which were not explicitly modelled. Obviously, the n-dimensional
identity matrix is suitable for that purpose.

To allow for meaningful error identification, some assumptions are made with respect to equation (11):

* The individual errors are written in “additive” form:

vr � v � δv

Such a “choice” of individual error terms is always possible without loss of generality. One may be required to
“lump” non-linear errors as in δ

�
YS � or δµp above.* Simultaneously occurring errors are assumed to be either additive, or sufficiently small to allow for an linear

approximation:

f
�
A � δA � B � δB �,+� f

�
A � B ��� ∂ f

∂A
�
A � B � δA � ∂ f

∂B
�
A � B � δB

Though such an assumption is not necessary per se, as non-linear effects can always be lumped into an extra error
term (using the above mentioned F0), this would defeat our purpose of isolating individual error contributions.

4 Abstraction levels and formalisms

There are several reasons why abstract models of systems are used. First of all, an abstract model description of a system
captures knowledge about that system. This knowledge can be stored, shared, and re-used. Furthermore, if models are
represented in a standard way, the investment made in developing and validating models is paid off as the model will be
understood by modelling and simulation environments of different vendors for a long time to come.
Secondly, an abstract model allows one to formulate and answer questions about the structure and behaviour of a system.
Often, a model is used to obtain values for quantities which are non-observable in the real system. Also, it might not be
financially, ethically or politically feasible to perform a real experiment (as opposed to a simulation or virtual experiment).
Answering of structure related questions is usually done by means of symbolic analysis of the model. One might for
example wish to know whether an electrical circuit contains a loop. Answering of questions about the dynamic behaviour
of the system is done (by definition) through simulation. Simulation may be symbolic or numerical. Whereas the aim of
modelling is to provide insight and to allow for re-use of knowledge, the aims of simulation are accuracy and execution
speed (often real-time, with hardware-in-the-loop).
One possible way to construct systems models (particularly in systems design) is by copying the structure of the system.
This is not a strict requirement. A neural network which simulates the behaviour of an aeration tank in an activated
sludge waste water treatment plant is considered a “model” of the tank. It may accurately replicate the behaviour of the
tank, though the physical structure of the tank and its contents is no longer apparent. For purposes of control, we are
often satisfied with a performant (real-time) model of a system which accurately predicts its behaviour under specific
circumstances, but bears no structural resemblance with the real system.
Abstract models of system behaviour can be described at different levels of abstraction or detail as well as by means
of different formalisms. The particular formalism and level of abstraction used depend on the background and goals of
the modeller as much as on the system modelled. As an example, a temperature and level controlled liquid in a pot is
considered as shown in Figure 11. This is a simplified version of the system described in [BZF98], where structural
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closed

Figure 11: T � l controlled liquid

change is the main issue. On the one hand, the liquid can be heated or cooled. On the other hand, liquid can be added or
removed. In this simple example phase changes are not considered. The system behaviour is completely described by the
following (hybrid) Ordinary Differential Equation (ODE) model:

Inputs (discontinuous - hybrid model):. Emptying, filling flow rate φ / t 0. Rate of adding/removing heat W / t 0
Parameters:. Cross-section surface of vessel A. Specific heat of liquid c. Density of liquid ρ. Temperature of incoming liquid Tin

State variables:. Temperature T. Level of liquid l

Outputs (sensors):. is low 1 is high 1 is cold 1 is hot

23333334 3333335

dT
dt � 1

l  W
cρA � φ

�
T � Tin �6"

dl
dt � φ

is low � �
l 7 llow �

is high � �
l 8 lhigh �

is cold � �
T 7 Tcold �

is hot � �
T 8 Thot �

The inputs are the filling (or emptying if negative) flow rate φ, and the rate W at which heat is added (or removed if
negative). This system is parametrized by A, the cross-section surface of the vessel, H , its height, c, the specific heat of
the liquid, and ρ, the density of the liquid. The state of the system is characterized by variables T, the temperature and l,
the level of the liquid. The system is observed through threshold output sensors is low� is high � is cold � is hot. Given input
signals, parameters, and a physically meaningful initial condition

�
T0 � l0 � , simulation of the behaviour yields a continuous

state trajectory as depicted in Figure 12. By means of the binary (on/off) level and temperature sensors introduced in the
differential equation model, the state-space may be discretized. The inputs can be abstracted to heater heat/cool/off and
pump fill/empty/closed. At this level of abstraction, a Finite State Automaton (with 9 possible states) representation of the
dynamics of the system as depicted in Figure 13 is most appropriate. Though at a much higher level of abstraction, this
model is still able to capture the essence of the system’s behaviour. In particular, there is a behaviour morphism between
both models: model discretization (from ODE to FSA) followed by simulation yields the same result as simulation of the
ODE followed by discretization. This morphism is shown as a commuting diagram in Figure 14.
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Figure 12: Trajectories
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temperaturecold T_in_between hot

full
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empty (cold,empty)
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(hot,empty)
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Figure 13: FSA formalism
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Figure 14: Behaviour morphism
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