
The State Automata Formalism
� Untimed models of discrete event systems

� Languages

� Regular Expressions

� Automata

– (Deterministic) Finite State Automata

– Nondeterministic Finite State Automata

– State Aggregation

– Discrete Event Systems as State Automata

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 1/31

Untimed models
� Level of specification: I/O System (state based, deterministic)

� Time Base = � (time � progression index)

� Dynamic but

– only sequence (order) of states traversed matters

– not when in state or how long in state

� Discrete Event: event set E

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 2/31

Languages – Regular Expressions – Automata
� language L, defined over alphabet E (events) �

set of strings formed from E

� Example: all possible input behaviours:

L � � ε � ARR � DEP� ARR ARR DEP��� � � �

� Regular expression: shorthand notation for a regular language

ARR DEP� ARR 	 DEP 	 �
 DEP � ARR � 	

Concatenation, Alternatives (�), Kleene closure ().

� Finite State Automaton (model): generate/accept a language

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 3/31

Finite State Automaton

 E � X � f � x0 � F �

� E is a finite alphabet

� X is a finite state set

� f is a state transition function,
f : X E � X

� x0 is an initial state, x0� X

� F is the set of final states

Dynamics (x� is next state):

x� � f
 x � e �

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 4/31

FSA recognizes Language
� extended transition function:

f : X E 	 � X

f
 x � ue � � f
 f
 x � u � � e �

� A string u over the alphabet E is recognized by a FSA
 E � X � f � x0 � F �

if f
 x0 � u � � x where x� F .

� The language L
 A � recognized by a FSA A �
 E � X � f � x0 � F �

is the set of strings � u : f
 x0 � u �� F � .

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 5/31

FSA graphical notation: State Transition Diagram

Init End_1

End_0

1

0

1

0

1

0

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 6/31

Simulation steps

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 7/31

Init End_1

End_0

1

0

1

0

1

0

Current State

Init End_1

End_0

1

0

1

0

1

0

Current State

Init End_1

End_0

1

0

1

0

1

0

Current State

Init End_1

End_0

1

0

1

0

1

0

Current State

Rule 1 Rule 2

Rule 2
Rule 2

Final Action
"Accept Input"

input 0

input 1
input 0

end of input

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 8/31

FSA Operational Semantics

/ <ANY><ANY>

<ANY>

Current State

2

4

3

1

/<COPIED><COPIED>

<COPIED>

Current State

2

4

3

1

<ANY>

1

/ <ANY><ANY><ANY> <ANY>

Current State

2

4

3 5

1

/<COPIED><COPIED>

<COPIED>
<COPIED>

Current State

2

4
3

5

1

::=

::=

::=

Rule 1 (priority 3)

Rule 2 (priority 1)

Rule 3 (priority 2)

Locate Initial Current State

State Transition

Local State Transition

condition:
matched(4).input == input[0]

action:
remove(input[0])

condition:
matched(4).input == input[0]

action:
remove(input[0])

<COPIED>

Current State

3

1

2

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 9/31

Nondeterministic Finite State Automaton

NFA �
 E � X � f � x0 � F �

f : X E � 2X

� Monte Carlo simulation (if probabilities added)

� Transform to equivalent FSA (aka DFA)

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 10/31

Nondeterministic Finite State Automaton

Idle

Coffee

Tea

drinkC

drinkT

thirsty

thirsty

Button

Button

TDrunk

Cdrunk

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 11/31

Constructed Deterministic Finite State Automaton

Idle Coffee$Tea drinkC$drinkTthirsty Button

Cdrunk

TDrunk

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 12/31

Transformation Rules

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 13/31

Rule LHS

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 14/31

Rule RHS

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 15/31

Managing Complexity: State Aggregation

 E � X � f � x0 � F �

R � X

R consists of equivalent states with respect to F

if for any x � y� R � x �� y and any string u,

f
 x � u �� F � f
 y � u �� F

x and y are equivalent for as far as “accepting/rejecting” input strings is

concerned.

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 16/31

State Aggregation Algorithm

1. Mark
 x � y � for all x� F � y �� F

2. For every pair
 x � y � not marked in previous step:

(a) If
 f
 x � e � � f
 y � e � � is marked for some e� E , then:

i. Mark
 x � y �

ii. Mark all unmarked pairs
 w � z � in the list of
 x � y � . Repeat this

step for each
 w � z � until no more markings possible.

(b) If no
 f
 x � e � � f
 y � e � � is marked, the for every e� E :

i. If f
 x � e � �� f
 y � e � then add
 x � y � to the list of f
 x � e � �� f
 y � e �

Pair which remain unmarked are in equivalence set

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 17/31

digit sequence (123) detector FSA

x_1 x_12 x_123

x_3 x_2

1 1

1

32

3

3

2
2

211

33

2

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 18/31

State Reduced FSA

x_1 x_12 x_123

x_0

1 1

1

32

3
2

21

3

3

2

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 19/31

State Automata to model Discrete Event Systems
� X is state space � � Q

� All inputs are strings from an alphabet E (the events) � � X

� State transition function x� � f
 x � e � � � δ

� Allow X and E to be countable rather than finite

� Introduce feasible events

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 20/31

State Automaton

 E � X � Γ � f � x0 �

� E is a countable event set

� X is a countable state space

� Γ
 x � is the set of feasible or enabled events
x� X � Γ
 x �� E

� f is a state transition function,
f : X E � X , only defined for e� Γ
 x �

� x0 is an initial state, x0� X

 E � X � Γ � f �

omits x0 and describes a class of State Automata.

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 21/31

Feasible/Enabled Events
� On transition diagram: not feasibe � not marked

� Meaning: ignore non-feasible events

� Why not f
 x � e � � x for non-feasible events ?

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 22/31

State Automata for Queueing Systems

Physical View

Queue Cashier

Departure

Arrival

Departure

Queue

Abstract View

Cashier
[ST distribution][IAT distribution]

Arrival

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 23/31

State Automata for Queueing Systems:
customer centered

...0 1 2 3 4 5

a

d

a

d

a

d

a

d

a

d

a

d

E � � a � d �

X � � 0 � 1 � 2 ��� � � �

Γ
 x � � � a � d � ��� x � 0 � Γ
 0 � � � a �

f
 x � a � � x � 1 ��� x � 0

f
 x � d � � x � 1 ��� x � 0

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 24/31

State Automata for Queueing Systems:
server centered (with breakdown)

I B

s

c

b
r

D

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 25/31

State Automata for Queueing Systems: server
centered (with breakdown)

E � � s � c � b � r �

Events: s denotes service starts, c denotes service completes, b denotes

breakdown, r denotes repair.

X � � I � B � D �

State: I denotes idle, B denotes busy, D denotes broken down.

Γ
 I � � � s � � Γ
 B � � � c � b � � Γ
 D � � � r �

f
 I � s � � B � f
 B � c � � I � f
 B � b � � D � f
 D � r � � I

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 26/31

Interpretations/Uses
� Generate all possible behaviours.

� Accept all allowed input sequences � code generation.

� Verification of properties.

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 27/31

State Automata with Output

 E � X � Γ � f � x0 � Y � g �

� Y is a countable output set,

� g is an output function

g : X E � Y � e� Γ
 x �

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 28/31

State Automata for Adventure Games

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 29/31

State Automata (later: Statecharts) for
Graphical User Interface Specification

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 30/31

Limitiations/extensions of State Automata
� Adding time ?

� Hierarchical modelling ?

� Concurrency by means of

� States are represented explicitly

� Specifying control logic, synchronisation ?

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Finite State Automata 31/31

