The State Automata Formalism

- Untimed models of discrete event systems
- Languages
- Regular Expressions
- Automata
 - (Deterministic) Finite State Automata
 - Nondeterministic Finite State Automata
 - State Aggregation
 - Discrete Event Systems as State Automata

Untimed models

- Level of specification: I/O System (state based, deterministic)
- Time Base = \mathbb{N} (time = progression index)
- Dynamic but
 - only sequence (order) of states traversed matters
 - not *when* in state or *how long* in state
- Discrete Event: event set *E*

Languages – Regular Expressions – Automata

- *language* L, defined over alphabet E (events) \equiv set of *strings* formed from E
- Example: all possible input behaviours:

 $L = \{\varepsilon, ARR, DEP, ARR ARR DEP, \ldots\}$

• Regular expression: shorthand notation for a regular language

ARR DEP, ARR * DEP*, (DEP|ARR)*

Concatenation, Alternatives (|), Kleene closure (*).

• Finite State Automaton (model): *generate/accept* a language

Finite State Automaton

 (E, X, f, x_0, F)

- *E* is a finite alphabet
- *X* is a finite state set
- f is a state transition function, $f: X \times E \rightarrow X$
- x_0 is an initial state, $x_0 \in X$
- *F* is the set of final states

Dynamics (x' is next state):

$$x' = f(x, e)$$

FSA recognizes Language

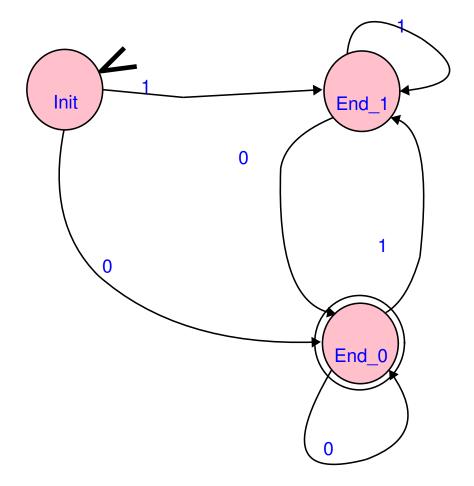
• *extended* transition function:

$$f: X \times E * \to X$$

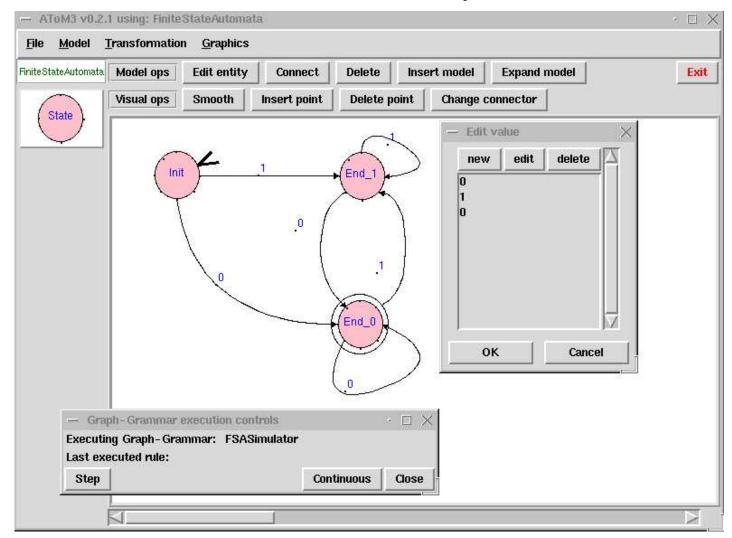
$$f(x, ue) = f(f(x, u), e)$$

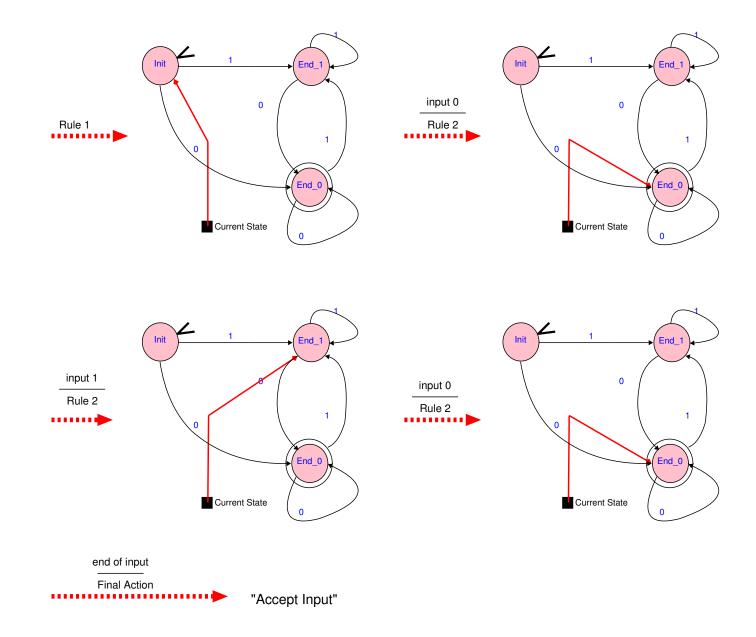
- A string *u* over the alphabet *E* is recognized by a FSA (E, X, f, x_0, F) if $f(x_0, u) = x$ where $x \in F$.
- The language L(A) recognized by a FSA $A = (E, X, f, x_0, F)$ is the set of strings $\{u : f(x_0, u) \in F\}$.

FSA graphical notation: State Transition Diagram

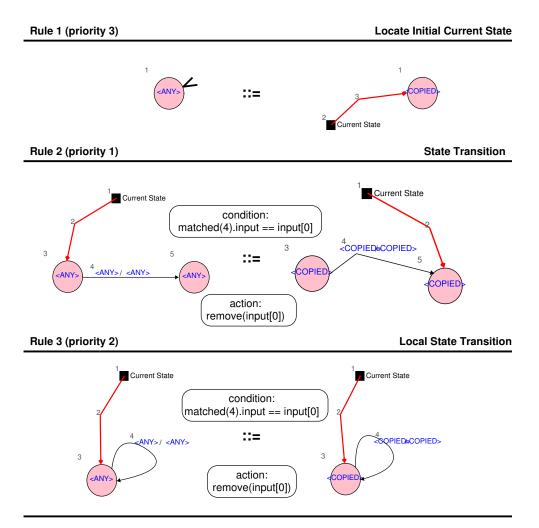


Simulation steps





FSA Operational Semantics



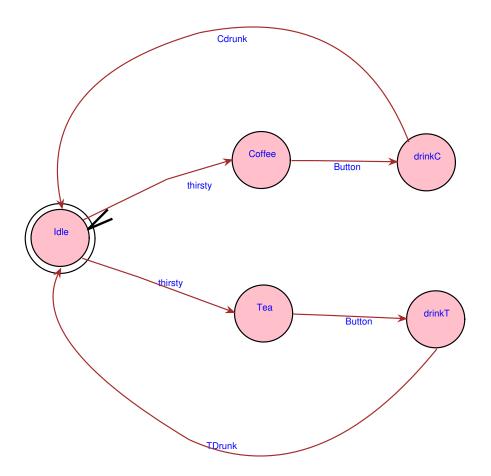
Nondeterministic Finite State Automaton

$$NFA = (E, X, f, x_0, F)$$

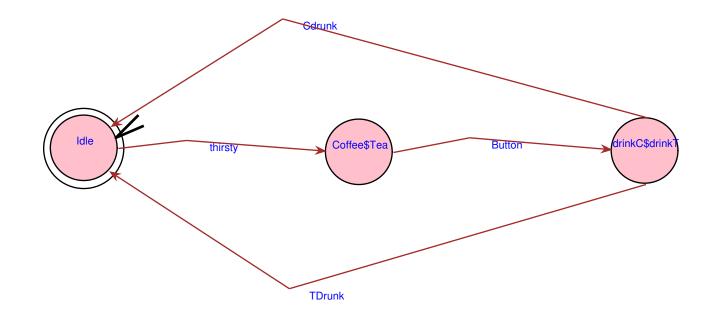
 $f: X \times E \to 2^X$

- Monte Carlo simulation (if probabilities added)
- Transform to equivalent FSA (*aka* DFA)

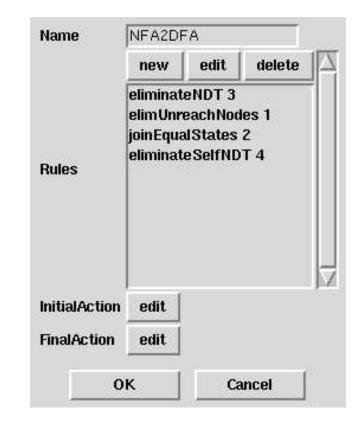
Nondeterministic Finite State Automaton



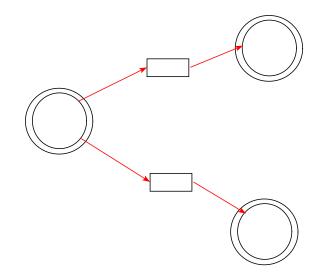
Constructed Deterministic Finite State Automaton



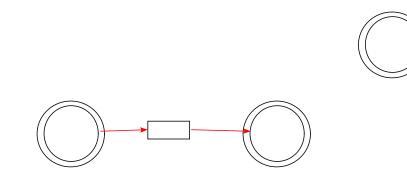
Transformation Rules



Rule LHS



Rule RHS



Managing Complexity: State Aggregation

$$(E, X, f, x_0, F)$$

 $R \subseteq X$

R consists of *equivalent states with respect to F* if for any $x, y \in R, x \neq y$ and any string *u*,

$$f(x,u) \in F \Leftrightarrow f(y,u) \in F$$

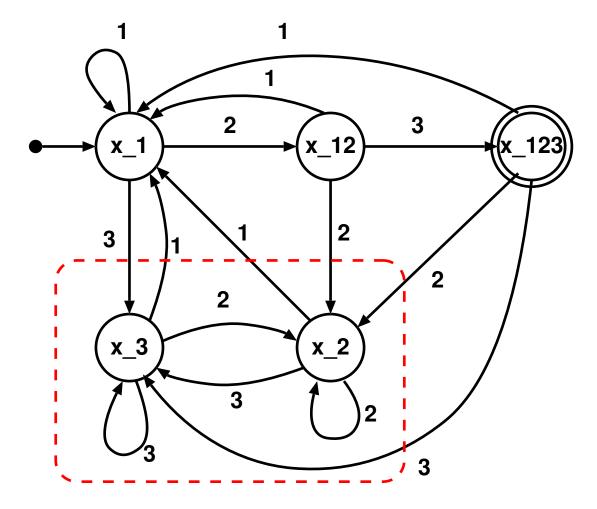
x and *y* are *equivalent* for as far as "accepting/rejecting" input strings is concerned.

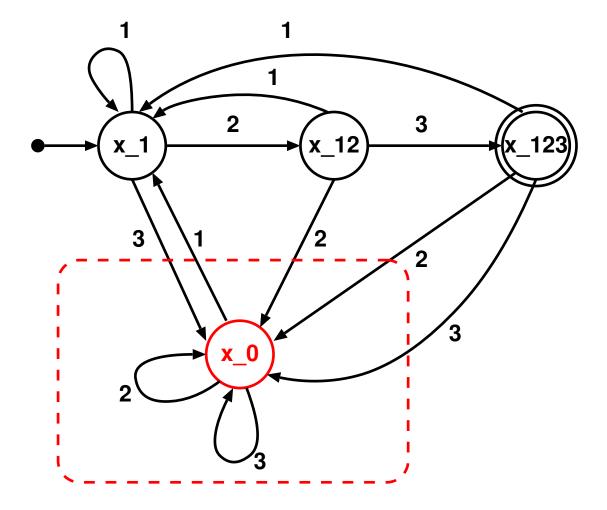
State Aggregation Algorithm

- 1. Mark (x, y) for all $x \in F, y \notin F$
- 2. For every pair (x, y) not marked in previous step:
 - (a) If (f(x,e), f(y,e)) is marked for some $e \in E$, then:
 - i. Mark (x, y)
 - ii. Mark all unmarked pairs (w,z) in the list of (x,y). Repeat this step for each (w,z) until no more markings possible.
 - (b) If no (f(x,e), f(y,e)) is marked, the for every $e \in E$:
 - i. If $f(x,e) \neq f(y,e)$ then add (x,y) to the list of $f(x,e) \neq f(y,e)$

Pair which remain unmarked are in equivalence set

digit sequence (123) detector FSA





State Automata to model Discrete Event Systems

- *X* is state space --Q
- All inputs are strings from an alphabet *E* (the events) -X
- State transition function $x' = f(x, e) \delta$
- Allow X and E to be *countable* rather than finite
- Introduce *feasible events*

State Automaton

(E, X, Γ, f, x_0)

- *E* is a countable event set
- *X* is a countable state space
- $\Gamma(x)$ is the set of feasible or enabled events $x \in X, \Gamma(x) \in E$
- *f* is a state transition function, $f: X \times E \to X$, only defined for $e \in \Gamma(x)$
- x_0 is an initial state, $x_0 \in X$

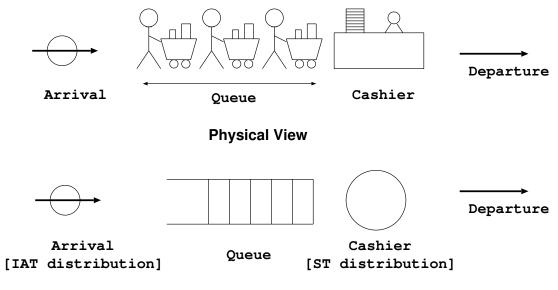
$$(E, X, \Gamma, f)$$

omits x_0 and describes a class of State Automata.

Feasible/Enabled Events

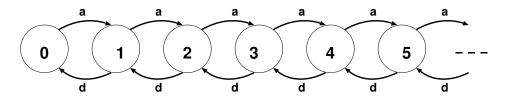
- On transition diagram: not feasibe \Rightarrow not marked
- Meaning: *ignore* non-feasible events
- Why not f(x,e) = x for non-feasible events ?

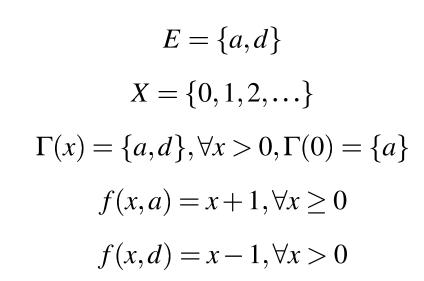
State Automata for Queueing Systems



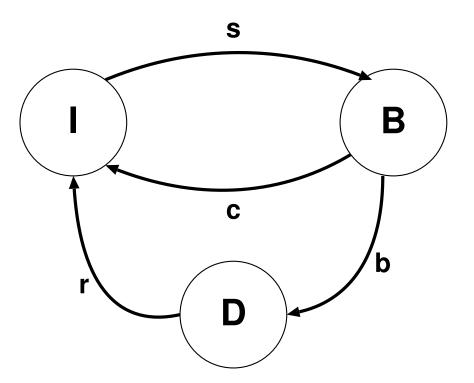
Abstract View

State Automata for Queueing Systems: customer centered





State Automata for Queueing Systems: server centered (with breakdown)



State Automata for Queueing Systems: server centered (with breakdown)

$$E = \{s, c, b, r\}$$

Events: *s* denotes service starts, *c* denotes service completes, *b* denotes breakdown, *r* denotes repair.

$$X = \{I, B, D\}$$

State: *I* denotes idle, *B* denotes busy, *D* denotes broken down.

$$\Gamma(I) = \{s\}, \Gamma(B) = \{c, b\}, \Gamma(D) = \{r\}$$
$$f(I, s) = B, f(B, c) = I, f(B, b) = D, f(D, r) = I$$

Interpretations/Uses

- Generate all possible behaviours.
- Accept all allowed input sequences \Rightarrow code generation.
- Verification of properties.

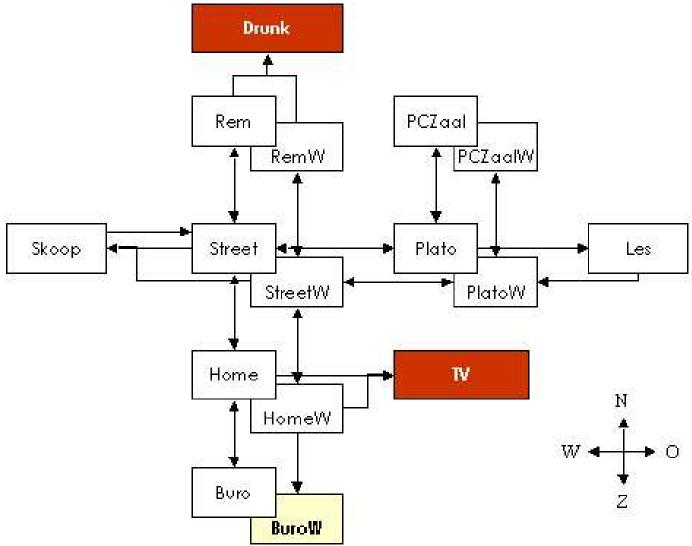
State Automata with Output

$$(E, X, \Gamma, f, x_0, Y, g)$$

- *Y* is a countable output set,
- *g* is an output function

$$g: X \times E \to Y, e \in \Gamma(x)$$

State Automata for Adventure Games



State Automata (later: Statecharts) for Graphical User Interface Specification

Limitiations/extensions of State Automata

- Adding time ?
- Hierarchical modelling ?
- $\bullet\,$ Concurrency by means of $\times\,$
- States are represented explicitly
- Specifying control logic, synchronisation ?