COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

Simonin Cédric

Project final report — December 25™, 2006

Game Al (C#) synthesis from statechart
Hoshimi project

Page |1

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

Table of contents

1] Hoshimi project presentationcooouiiiiiiiiii i e et e e e e aba e e e e aaaaee s 3
Y do T VAT o To o 10T o To 1Y SR 3
[.B- The Simulation @NVIFONMENT........ciiiiie ettt e e s e e saree s 3

LB.Q= TRE MQIN POINTS....eeeieeeeeeeeee ettt e ettt e e e e e ettt e e e e e sttt tssaaaaeeassssssasaaaeesssssssnees 3
1.B.b- The different environment CONStItULIONS..............ccccvuveeeecueeseiiieeeesieeeeeecreeeeeesiseraesisseaeesiseeas 4
[o U T=e] =T =L e Lot (o) RS 4
[.C- The SYStEM @rCRItECTUIE. .. ueeiii it e e e e e e e e e e e e e e e s eanbe e e e e e e s sennssaeeeeaaeenanns 5

1] FrOM AtOM® 10 CH COUE.........oeceeeieeeieeeeeeee ettt ettt st sn st eeeneeeesneeeans 6
1 N o TN 110 0 I o) T o] =T o1 SRR 6
11.B- The @PPliCAtION ATOM>........vieeeeeeeeeeee ettt et s et e e s st es st es st eses s seeneseeeseeseanas 6
[1.C- Specificities Of the CH IaNGUAEEeeiii it e e e e e et re e e e e e e e earnees 7
[1.D- HOW dOBS It WOTK 2 ..ttt ettt ettt sttt sar e e s b e e san e e sareesareeesneeesareesaneenas 7

11.D.0- DEfINItION Of O SEALE ..ottt e ettt e e ettt e e ettt e e e e tae s e s aasseaesassesaeassesann 7
11.D.b- Definition of @ StatechQrt MACRINEcccvveieecieieeeieieeeecee et escee e st e e e scveaeesaeea s 8
H.D.C- Translation iNtO CH COUE ..ot 9
[LLE- THE SIMUIGTOT ..ottt et et e st e e saee e s bt e e ne e e san e e sabeesaneeesnneesaneas 13

111] Modelisation of the artificial intelligence ... 14
[ILA- Modelisation of the @XPIOTer.........uvi e e e e e e 14
[11.B- Modelisation of the Nan0 COlECLON........oiiiii i 15
[11.C- Modelisation of the CONTAINETcc.uiiiiiiee e e 17
[11.D- Modelisation of the artificial iNtelligeNCe........ccocuveiieceie e 19

IV] Overview of the SIMUIGtIoON ... e e e e e e e e e e e eean 23

CONCIUSION ...ttt ettt e st e st e s bt e e sabeesabee s s meeesabeesabeesabeeeaneeesareesaneeans 24

Page |2

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

I] Hoshimi project presentation

I.A- Story and purpose
Created two vyears ago in 2005, project Hoshimi programming battle (http://www.project-
hoshimi.com/) is one of the challenges proposed by the Microsoft Imagine Cup contest
(http://imaginecup.com/). The main purpose of this game is to cure somebody due to the help of
nano robots. In 2005, you had to cure Japanese professor Hoshimi, the inventor of this new
technology and last year the Indian ambassador in Japan. In fact the nationality of this person always
depends on the country where the challenge is going to happen.

@k imagin :ﬁup)

Figure 1: Hoshimi posters (2005, 2006 and 2007)

The aim of the player is to define the artificial intelligence of the nano robots that will be deployed
and then, act on their own in the ambassador’s organism. Two players are running in the same time
in the simulator, trying to cure the ambassador and getting points for this. At the end, the player with
the highest number of points wins.

I.B- The simulation environment
The Hoshimi simulation environment is composed of different points, constitution and various kinds
of nano robot can operate inside it.

I.B.a- The main points
AZN Point

This point is the location where nano robots can collect AZN molecules which will
be used to cure the ambassador. The number of AZN points in the system is limited
and they are represented by a small circle in the 2D simulation viewer.

Hoshimi Point

This point is the location where nano robots have to bring the AZN molecules
which will be then spread into the whole organism. Players win points doing this.
The number of Hoshimi points in the system is limited and they are represented by
a small square in the 2D simulation viewer.

Page |3

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

Injection point

The location where all your nano robots team is injected into the organism of the
ambassador. This point is different for each player and is determined by this one at
the beginning of the simulation. There is only one injection point by player in the
system and they are not displayed in the 2D simulation viewer.

I.B.b- The different environment constitutions
There are three types of environment in the Hoshimi simulation. In fact nano-robots can operate in
the blood (in red in the 2D display), the bones (in green) or the nerves (in grey). Depending on the
constitution of the environment and its density, the robots move more or less fast and this has a
great incidence on your conquest speed.

Blood area Bones area Nerves area
Normal density High density Highest density

I.B.c- The different actors
In the Hoshimi simulation, your nano robots team can be composed of five types of actor, each one
having its own advantages and drawbacks.

Nano Al

This robot is the leader of the team. Being the first injected into the
organism, it is responsible for building the other nano robots. Moreover
these robots define the whole strategy of the team and as a consequence if
this one is destroyed, the game is finished.

Nano Needle

This robot are created and fixed by the Nano Al on the Hoshimi points
located on the blood vessels. Their purpose is just to receive AZN molecules
and to deliver them to the entire body. This robot can defend themselves
against enemy bots.

Nano Collector

This actor is the first type of robot that can collect AZN molecules from the
AZN points and transfer them to the nearest needle. This robot has a very
low capacity (20 molecules) but they can defend themselves.

Page |4

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

Nano Container
This is the second type of collector robots. This one has a higher capacity (50
molecules) but it cannot defend itself.

Nano Explorer

This robot is not able to carry AZN molecules but has a very-well developed
ability to scan the map. In fact, it is useful to always have information
concerning enemy location at any moment of the simulation. This robot can
not defend itself.

I.C- The system architecture
There are two types of actors:
e Al developers: beginner or expert, they develop the artificial intelligence of the nano robots
in c# language with Visual Studio .NET.
e Community developer: creates maps and missions in order to test the different Al.

/ Beginner Developper ™ P

;"_ Connect and visualize game _‘\
Real time

E G |Tech
= = WyReplay “\\’\L;'Iué"’ “l
-

;o ~Gg,

\@\% \, Recard your
=g \k '\, hatte
e
~ Y
g B \
~+. { E
‘j Generate asses ﬁ
—_—_— MyPlayerdl | ——
|| Greate ana Eatt strategy i Connect
Pa.
gl Visual studionet ! =
Parti |pan'\ Edition Express.
\ \ / EHViewer 3D
S Q&,\ Experience Developper -4 MyMission 'j Server
) \\ Game engine Qh%
N 7
P - 8 o
%
v ,
a,m &é@ PHCustomVigwer
Q*"\ @ 7

:
k. Mission Egitor Community Dmloppft/

Figure 2: Architecture of the system

Page |5

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

I1] From Atom?® to c# code

Il.LA- The aim of project
In the system previously described, the aim of my project is to develop a tool to help experience
developer to define and create their Al. Using Atom® tool and the classDiagramv3 formalism, they
have the possibility to graphically model their artificial intelligence and to automatically generate the
c# code in the end.

This challenge containing a lot of parameters and actors, Hoshimi project is a good example of
contest that requires a useful and efficient tool to model before developing.

- Beginner Developper .,
{ iy PPe \ Replay
e — S i —.
hh /7 Connect and visualize game
Real time
= Techy . Review your
e, MyReplay T paila
N * T
s \]
J G, | \
2 %Jb '\.\ \-‘F{uwrd your
X 55(5?2%;_ -\. battle
% & \
B N
| B \ "
.ﬂ ! a | o .
iy Q! dhe | Generate a5y 'l'aly" -hi
= AL
Create and Edit strategy MyPayer.dl
Visual sudionst!
[5 Ediion Express. E
- Experience Developper PHViewer 3D
b i NiyMissian FHServer >
\] =
‘o Game engine \\“G%q
s \
v i -
£ S Y
& | PHCustomViewer
<\'°\?§

Iission Edito

Figure 3: Aim of my project

Community Developper,’

I1.B- The application Atom®
As mentioned previously, my project consists in creating an extension to the atom3 application and
more precisely to the formalism CD_ClassDiagramv3. First, this formalism allows user to model their
application using UML class diagram containing variables, methods... The specificity of this
application is to be able to add to each class one statechart to describe the behavior of the object
defined. This ability will be very useful to map each class of a nano robot to a statechart that describe
its different behavior during the simulation.

Secondly, this formalism can automatically generate code from this class and statechart diagrams.
When | receive it, the different languages handled were python, C, C++ and Java. One of my purposes
was also to add new functionalities to handle the translation into c# code and as a consequence fits
with Hoshimi project language requirements.

Concerning statechart, the application allows us:

e To create states. For each one, user has to define if the current state is the default one and
can add pieces of code that will be executed when you will enter and exit the state. We call
this code: enter and exit code.

* To create edges. For each one, user can define a guard that defines if the transition can be
fired or not and piece of code that will be executed when the transition is fired. We name
this code: trigger code.

Page |6

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

This formalism contains other functionalities (composite state, various parameters ..

.) but they won’t

be used in this project.

& projec 33 Formaiisms [@ Microsottponerpain.. ¥’ sans tre - aint @ Macromedia Firewor.. B Raccourc vers atom.

ATaM3 0.3 using: CO_ClassDiagrams¥3

JJJJJJJ\ =

Editing ATOM3Atribute

FIEAT w0’

o000

Attbute rame: beravior I il & m
:Dva PveC\asszde TY|& MyCoIIector | Myal
EDV3 EelMeAhnd TP }
Aot Ml “AToM3v0.3 using: Deharts e
DCharts |E ;
- Aethod TYPE t
ut0) we | I o
uls ory Server
Intia vah T i
=dt
== Method_TYPE
G 13_Method_TYPE
L lionPointEvent = CDV3_Method_TYPE
extEvent - CDV3_Method_TYPE
FSM type=COV3 GetMethod TYPE initvalie=FS 4 DV3_ ObjectReference TYPE
Attributes nothing ot feeeProvantype=CDa Beththon TYPE o \n{eger -
-FSM K 0t | o pe-GhVa_Getholiod TPE nt s tteger
ock: i value=D
- ‘;IAgz‘cg FEMStateWaitCollector Delete] constiuct type=CDV3_Constructar_ TVF’E itval -+ eger
7beyhaw ady_transfer - JILD :: Integer
- ew
g £ “DV3_Gethethod_TYPE
_fsm: d =P hranstering Delets :DV3_Method_TYFE
_goToAl .‘ g v3_ObjectReference_TYPE
-goToSt FSMStateTransfertCollector Hew CDV3_ObjectReference_TYPE
top: C Edt. _ObjectReferance_TYPE
— b DW3_Method_TYPE
_ e DChart_TYPE
s - T e T
(Atributes [collector_MDL py' (ot modified) [Editing transf. Nonamed" (not modified) in file T L, tendClassCode_TYPE
'Z;Z E R ol p stReference_TYPE
- e 2dles : CDV3_Method_TYPE
- extend | CDV3_ExtendClassCode_| YPE o Coreel it CDV3_Method_TYPE
rgoToNeed\esFromBotg CDV3_Method_TYPE
- goToNeedlesFromSoldiers : COV3_Method_TYPE
- goToNeedlesFromWait - CDY3_Method_TYPE
- aoToWaitFromBots =~ COV3 Method TYPE -

.

[Editing trans. Nanamed' (not modited) in fle Nanamed"

Figure 4: Atom3 GUI

hashimi_final MDL py' (not modified)

I1.C- Specificities of the c# language

As previously mentioned, multiple languages were already handled by the application. There are

some specificities of the language:

® namespace: similar to package in java language, definition of namespace at the beginning of
a file links all the files of the same project together. The particularity of this word is the fact
that it includes the whole code of the file between open and close brackets. As a
consequence, we define a new type in this formalism called CDV3_PostClassCode to allow

the user to put some code at the end, and in particular a close braket.

® inheritance: being an object-oriented language, c# language often uses inheritance. To
handle this type of class definition, we add a new type called CDV3_ExtendClassCode to

allow user to add some piece of code just after the name of the class.

11.D- How does it work ?

Now that we have seen how to model and to create class diagrams under atom®, we are going to

study how to translate this into c# code.

11.D.a- Definition of a state

First of all, we created an abstract class that defines the internal behavior of a state. During this
translation into c#, each state of the diagram will extend this class named FSMState. This class
contains a variable owner to give the possibility to the code of this state to reach the methods of

main class. Besides, this class declares four functions:

e enter(): defines the code that will be executed when the simulator will enter this state;

e exit(): defines the code that will be executed when the simulator will exit this state;

e update(): defines the code that will be executed when the simulator will remain in this state;
e getNextTransition(): returns the next possible state or the current one depending on guards.

Page |7

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

This is the ct# code of this class:
public abstract class FSMState

{

protected object owner = null;

public FSMState (object owner) {
this.owner

}

owner;

public object Owner

{

get { return owner; }
set { owner

}

public
public
public
public

abstract
abstract
abstract
abstract

= value; }

void Enter ();
void Exit () ;
void Update();

Type getNextTransition();

11.D.b- Definition of a statechart machine

You are now going to define the behavior of the statechart machine. This class named FSMMachine

contains a list with all the possible states it can reach and two variables that store current and default

states. In addition, this class defines 5 functions:
e Addstate(): adds a FSMState object to the list of possible states;

e SetDefaultState(): initializes the value of the variable that keeps the information concerning

the default state;

e getCurrentState(): returns the value of the current state;

e existsState(): checks if a given state exists in our model. If not, the statechart returns to its
default state ;

® Update(): running method of the machine, it first checks if the state is going to change via the
getNextTransition function of this one. If so, the method runs the exit function of the current
state, substitutes this one with the new state and executes the enter function of this one. In
all the cases, the method executes in the end the update function of the current state.

public class FSMMachine

{

// Declaration of the variables

protected List<FSMState> states
all the states

protected FSMState currentState =

protected FSMState defaultState

public void AddState (FSMState state)

new List<FSMState>(5); // List of

null;
null;

// Current state
// state by default

{ states.Add(state); }

public void SetDefaultState(FSMState state) { this.defaultState =

state; }

public FSMState getCurrentState()

{ return this.currentState; }

private FSMState existsState (Type type)

foreach

}

(FSMState state in states)

if (state.GetType() == type)
return state;

return defaultState;

}

public void Update()

{

Page |8

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

// If there is at least one state
if (states.Count != 0)

{
// If it is the first iteration
if (currentState == null)

{
// current state = default state
currentState = defaultState;
// even default state was not define
if (currentState == null)
// we stop
return;

}

Type oldStateType = currentState.GetTypel();
Type newStateType = currentState.getNextTransition();

// If the state has changed
if (oldStateType != newStateType)
{
currentState.Exit(); // exit the current state
currentState = existsState(newStateType); // go to the
next state
currentState.Enter(); // enter the state

}
// update the state
currentState.Update () ;

11.D.c- Translation into c# code
After having defined these two classes, we are going to study the translation process described in the
file exporter_CSharpExporter.py.

The first part of this process is the translation of the pure class diagram into c#. Theses are the main
steps:

® Printing of the preClass code that contains imports (using in c#), namespace and
characteristics of the class defined;

® Printing of the name of the class with the possible inheritance;

e Declaration of all the variables;

e Declaration of the constructor. In each constructor and if a statechart is defined in the class,
it calls the method processChartConstructor. This method reads all the states of diagram,
declares a FSMState variable for each, adds them to the FSM Machine states list of the class
and defines the default state when it finds it;

e Definition of all the methods;

® Printing of the postClass code.

This part of the translation is handled by the following code:
def run(self):

methodList = []

constructorList = []
destructorList = []

Page |9

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

self.fOut =

exporter_FileOutputer.FileOutputer (self.classDiagram.name + ".cs.txt")

self.fOut.write("using System;")
self.fOut.write("using System.Collections.Generic;");
self.fOut.write("using System.Text;");

for code in self.classDiagram.preClassCode:
self.writeCode (code)

extend = "";
for code in self.classDiagram.extendClassCode:
extend = code

self.fOut.indent ()

self.fOut.write("class " + self.classDiagram.name + extend)

self.fOut.write("{")
self.fOut.indent ()

for attribute, type, initValue in self.classDiagram.attributes:

if type == "Float"
self.fOut.write("public float " + attribute +
initvValue + ";")
if type == "Integer"”
self.fOut.write("public int " + attribute + "
initvValue + ";")

if type == "Boolean"
if initValue == True:
self.fOut.write("public bool " + attribute + " =
true; ")
else:
self.fOut.write("public bool " + attribute + "
false; ")
for name, type in self.classDiagram.objectRef:
self.fOut.write("public " + type + " " + name + ";")
self.fOut.write()
for parameters, body in self.classDiagram.constructors:
if (extend==" : VG.Common.Player\n" or extend=="
VG.Common.Player") and parameters=="string _name, int _1id":

self.writeConstructor (self.classDiagram.name,
body, ": base(_name, _id)")
else:
self.writeConstructor (self.classDiagram.name,
body, n ")

for name, parameters, returnType, body in
self.classDiagram.getMethods:
self.writeGetMethod (name, returnType, body)

for name, parameters, returnType, body in
self.classDiagram.methods:

parameters,

parameters,

self.writeMethod (name, parameters, returnType, body)

for body in self.classDiagram.destructors:
self.writeMethod ("end”, "", "void", body)

self.fOut.dedent ()
self.fOut.write ("} ")

Page |10

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

if self.stateChart != None:
self.processChart (self.classDiagram.name)

self.fOut.write()

for code in self.classDiagram.postClassCode:
self.fOut.dedent ()
self.writeCode (code)

self.fOut.write()

self.fOut.close()

def writeCode(self, body):
lineByLine = body.split(”"\n")
for line in lineByLine:
self.fOut.write(line)

def writeConstructor(self, name, parameters, body, extension):
self.fOut.write("public " + name + " (" + parameters + ")
"+textension+" {")
self.fOut.indent ()
self.writeCode (body)
if self.stateChart != None:
self.processChartConstructor ()
self.fOut.dedent ()
self.fOut.write("}")

def writeMethod(self, name, parameters, returnType, body):
self.fOut.write("public " + returnType + " " + name + "(" +
parameters + ") {")
self.fOut.indent ()
self.writeCode (body)
self.fOut.dedent ()
self.fOut.write("}\n")

def processChartConstructor(self):
self.fOut.write("fsm = new FSMMachine();");
for state in self.stateChart.basics:
if self.stateChart.transitionData[state] != []
self.fOut.write("FSMState "+state.name.getValue()+" var =
new "+state.name.getValue()+" (this);")

self.fOut.write("fsm.AddState ("+state.name.getValue()+" var),;");
if (self.stateChart.initState == state.name.getValue()):

self.fOut.write("fsm.SetDefaultState ("+state.name.getValue()+"_var),;")

def writeGetMethod(self, name, returnType, body):
self.fOut.write("public " + returnType + " " + name + " {")
self.fOut.indent ()
self.writeCode (body)
self.fOut.dedent ()
self.fOut.write("}\n")

The second part of this translation happens if a statechart is defined in the class diagram. If so, the
function processChart is called just before the printing of the postClass code. This one creates a new
class for each states of the diagram extending FSMState class (class nameOfthestate : FSMState) and
containing by default an object called owner and having the type of the current main class. By
example, if we are generating c# code for a class named robot, the type of this object will be robot.

Page |11

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

Then for each state, the function processTransition initializes the different methods of the state
previously described. For each edge leaving a state:
e |f the destination state is the same than the source one, the trigger code of this arrow will
correspond to the update function.
e |f the destination state is different than the source one, the following code is added to the
body of getNextTransition function:
if ([GUARD]) {

[trigger code]
return typeof ([Destination state]);

This part of the translation is handled by the following code:
def processChart (self,classe):
for state in self.stateChart.basics:

if self.stateChart.transitionData[state] != []
self.processState(state,classe);

def processState(self, state,classe):

self.fOut.write("public class "+state.name.getValue()+"
FSMState)

self.fOut.write("{");

self.fOut.indent ()

self.fOut.write("public "+state.name.getValue()+" (object owner)
base (owner) { /* Do nothing */ }");

self.processTransition(state,classe)

self.fOut.dedent ()

self.fOut.write("}");

def processTransition(self, state,classe):

codes = []
guards = []
nextState = []
transitions = self.stateChart.transitionData[state]
transitionOk = 0
for transition in transitions:
if transition|["destinationState"] == state.name.getValue():

self.fOut.write("public override void Update()");

self.fOut.write("{");

self.fOut.indent ()

for code in transition|["triggerCode"]:
self.writeCode (code)

self.fOut.dedent ()

self.fOut.write("}");

self.fOut.write("public override void Enter()");
self.fOout.write("{");
self.fOut.indent ()
if len(transition["enterCode"])>0:
for code in transition|["enterCode"]:
self.writeCode (code)
else:
self.fOut.write("//Rien a faire ici");
self.fOut.dedent ()
self.fOout.write("}");

self.fOut.write("public override void Exit ()");

self.fout.write("{");
self.fOut.indent ()

Page |12

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

if len(transition["exitCode"])>0:

for code in transition["exitCode"]:
self.writeCode (code)

else:
self.fOut.write("//Rien a faire ici");

self.fOut.dedent ()

self.fOut.write("}");

else

transitionOk = transitionOk + 1

if len(transition["triggerCode”"])>0:
codes.append (transition["triggerCode"])
guards.append (transition|["guard"])
nextState.append(transition["destinationState"]);

if transitionOk > 0 or len(transitions)==
self.fOut.write("public override Type getNextTransition()");
self.fOout.write("{");
self.fOut.indent ()

self.fOut.write(classe+" "+classe+" var = ("+classe+")owner;");
if len(codes)>=1:
i=0
for code in codes:
if guards[i]=="1":
guards [i]="true”

self.fOut.write("if ("+classe+" _var."+guards[i]+") {");
self.fOut.indent ()
for code in codes[i]:
self.writeCode (code)
self.fOut.write("return typeof ("+nextStatel[i]+");");
self.fOut.dedent ()
self.fOout.write("}");
i = i+1
self.fOut.write("return this.GetType ();");
self.fOut.dedent ()
self.fOout.write("}");

Il.E- The simulator
The simulator developed by Microsoft is quite easy to understand. The program is based on an
infinite while loop. This loop calls at each iteration a function called MyAl_WhatToDoNextEvent()
declared in the NANO Al class. With the function MyAl_ChooselnjectionPointEvent() that chooses the
injection point of the robots, this function must appear in the definition of your Al. Moreover, this
one calls the update function of each robots FSM machine. This is the way how the robots evolve
during the simulation.

Finally, the simulation is over after a certain number of turns depending on the requirements of the
mission.

Page |13

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

Il]] Modelisation of the artificial intelligence

Ill.A- Modelisation of the explorer

The first behavior that | have modeled was the one of the nano explorer. This robot has only two
states:

e FSMStateSearchMoustik: state by default, the nano explorer is looking for someone
randomly, traveling around the map.

* FSMStateFollowMoustik: the nano explorer found an enemy and decides to follow it. In my
implementation it follows the enemy Nano Al.

This is the statechart of the Nano Explorer:

StateFollowhdoustik
Tind_somebody

FShStateSearchhoustik

This is the c# code produced:
class MyMoustik : VG.Common.NanoExplorer

{

public MyMoustik () {
fsm = new FSMMachine () ;
FSMState FSMStateSearchMoustik_var = new
FSMStateSearchMoustik (this);
fsm.AddState (FSMStateSearchMoustik_var) ;
fsm.SetDefaultState (FSMStateSearchMoustik_var) ;
FSMState FSMStateFollowMoustik_var = new
FSMStateFollowMoustik (this);
fsm.AddState (FSMStateFollowMoustik_var) ;

}

public bool goToFollowFromSearch() {
}
}

public class FSMStateSearchMoustik : FSMState
{

public override void Update () {

}

public override void Enter () {

}

public override void Exit () {

}

public override Type getNextTransition () {
MyMoustik MyMoustik_var (MyMoustik) owner;

Page | 14

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

if (MyMoustik_var.goToFollowFromSearch() == true) ({
return typeof (FSMStateFollowMoustik);
}
return this.GetType();
}

}
public class FSMStateFollowMoustik : FSMState
{

public override void Update () {

}

public override void Enter () {

}

public override void Exit () {

}

public override Type getNextTransition () {
MyMoustik MyMoustik_var = (MyMoustik)owner;
return this.GetType();

I11.B- Modelisation of the nano collector

For the purpose of the project, the nano collector is only used as a soldier having the possibility to
attack its enemy. Like the nano explorer, this robot has two states:

* FSMStateSearchSoldier: state by default, the soldier is wandering in the map without being
attacked by an enemy.

* FSMStateAttackSoldier: the soldier is defending itself, attacking the enemy.

Contrary to the nano explorer, this robot can come back to the search state if the enemy disappears.

This is the statechart of the nano collector:

figd_somebody

L rrare_ennermi

This is the code produced:
class MySoldier : NanoCollector
{
public bool IsAttacking = false;

public MySoldier () {

Page |15

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

this.IsAttacking = false;

fsm new FSMMachine();

FSMState FSMStateAttackSoldier_var = new
FSMStateAttackSoldier (this);

fsm.AddState (FSMStateAttackSoldier_var);
FSMState FSMStateSearchSoldier_var = new
FSMStateSearchSoldier (this);

fsm.AddState (FSMStateSearchSoldier_var) ;
fsm.SetDefaultState (FSMStateSearchSoldier_var) ;

}
public bool goToAttack () {

}
public bool goToSearch() {

}

public class FSMStateAttackSoldier : FSMState
{

public override void Update () {

}

public override void Enter () {

}

public override void Exit () {

}

public override Type getNextTransition|()

{
MySoldier MySoldier_var = (MySoldier)owner;
if (MySoldier_var.goToSearch() == true) {

return typeof (FSMStateSearchSoldier);

}
return this.GetType();

public class FSMStateSearchSoldier : FSMState
{

public override void Update () {

}

public override void Enter () {

}

public override void Exit () {

}

public override Type getNextTransition () {
MySoldier MySoldier_var = (MySoldier)owner;
if (MySoldier_var.goToAttack() == true) {

return typeof (FSMStateAttackSoldier);

}
return this.GetType();

Page |16

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

l1l.C- Modelisation of the container
This is the third robot | modeled. The complexity of this one was the fact that there were multiple
leaving edges. This robot has three different states:
e FSMsStateCollectCollector: state by default, the nano collector collects or is going to collect
some AZN molecules from an AZN point;
e FSMStateWaitCollector: after collecting cure, the robot is waiting for a needle to be built on
an Hoshimi point;
e FSMStateTransferCollector: after collecting cure, the robot is transferring its AZN molecules
to an available needle.

This is the statechart corresponding to this robot:

no_needle nothing

FEMStateWaitCollector

eady_transfer

ranafering
FSMState TransfertCollector

This is the code produced:
class MyCollector : VG.Common.NanoContainer

{
public MyCollector () {

fsm = new FSMMachine/();
FSMState FSMStateTransfertCollector_var = new
FSMStateTransfertCollector (this);
fsm.AddState (FSMStateTransfertCollector_var);
FSMState FSMStateCollectCollector_var = new
FSMStateCollectCollector (this);
fsm.AddState (FSMStateCollectCollector_var);
fsm.SetDefaultState (FSMStateCollectCollector_var);
FSMState FSMStateWaitCollector_var = new
FSMStateWaitCollector (this);
fsm.AddState (FSMStateWaitCollector_var) ;

}

public bool goToCollectFromTransfert () {

}
public bool goToTransfertFromCollect () {

}
public bool goToTransfertFromWait () {

}

Page |17

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

public bool goToWaitFromCollect () {

}
public bool goToWaitFromTransfert () {

}

public class FSMStateTransfertCollector : FSMState
{

public override void Update () {

}
public override void Enter () {
}
public override void Exit () {
}
public override Type getNextTransition () {
MyCollector MyCollector_var = (MyCollector)owner;
if (MyCollector_var.goToCollectFromTransfert () == true) ({
return typeof (FSMStateCollectCollector);
}
if (MyCollector_var.goToWaitFromTransfert () == true) {
return typeof (FSMStateWaitCollector);
}
return this.GetType();

public class FSMStateCollectCollector : FSMState
{

public override void Update() {

}
public override void Enter () {
}
public override void Exit () {
}
public override Type getNextTransition () {
MyCollector MyCollector_var = (MyCollector)owner;
if (MyCollector_var.goToTransfertFromCollect () == true) {
return typeof (FSMStateTransfertCollector);
}
if (MyCollector_var.goToWaitFromCollect () == true) {
return typeof (FSMStateWaitCollector);
}
return this.GetType();

public class FSMStateWaitCollector : FSMState
{

public override void Update () {
}

public override void Enter () {
}

public override void Exit () {

}

Page |18

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

public override Type getNextTransition () {
MyCollector MyCollector_var = (MyCollector)owner;
if (MyCollector_var.goToTransfertFromWait () == true) {
return typeof (FSMStateTransfertCollector);
}
return this.GetType();

I11.D- Modelisation of the artificial intelligence

This is the last artificial intelligence that | have defined and the most complex one. This robot has
four possible states:

FSMStateBuildSoldierAl: state by default, the nano Al begins the simulation by building the
soldiers (nano collector, nano explorer);

FSMStateBuildNeedlesAi: the nano robot is building a needle on the nearest Hoshimi point
from the location it had when it reached this state;

FSMStateBuildBotsAl: the nano robot is creating non-soldier robots (container);
FSMStateWaitAl: The nano robot is waiting for the possibility to build another bot or another
needle.

This is the statechart of this robot:

ts_to_huild

= Ly
needles_[0-buil] @

led A" S SteBuildBoan

_to_build

nofmore_to._build

doldier_to_build

&)
FSMStateBuildSoldierAl FSMStateWaitAl

This is the c# code produced:

class MyAI : VG.Common.Player

public MyAI(string _name, int _id) : base(_name, _id) {

fsm = new FSMMachine () ;

FSMState FSMStateBuildSoldierAI_var = new
FSMStateBuildSoldierAI (this);

fsm.AddState (FSMStateBuildSoldierAI_var) ;
fsm.SetDefaultState (FSMStateBuildSoldierAI_var) ;
FSMState FSMStateBuildNeedlesAI_var = new
FSMStateBuildNeedlesAI (this);

fsm.AddState (FSMStateBuildNeedlesAI_var) ;
FSMState FSMStateBuildBotsAI_var = new
FSMStateBuildBotsAI (this);

fsm.AddState (FSMStateBuildBotsAI_var) ;

FSMState FSMStateWaitAI_var = new FSMStateWaitAI (this);
fsm.AddState (FSMStateWaitAI_var) ;

}

public void MyAI_ChooseInjectionPointEvent () {

Page |19

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

}

public void MyAI_WhatToDoNextEvent () {

this
this
this
this

.nbCollector = 0;
.nbNeedle = 0;
.nbSoldier = 0;
.nbMoustik = 0;

foreach (NanoBot botl in base.NanoBots)

{

}

this.

}

if (botl is MyCollector)

{ this.nbCollector++;
if (((MyCollector)botl).Team == -1)
{ this.UpdateTeams () ;
i(MyCollector)botl).FSM.Update();

;lse if (botl is MyNeedle)

{ this.nbNeedle++;

;lse if (botl is MySoldier)

{ this.nbSoldier++;
((MySoldier)botl) .FSM.Update () ;

;lse if (botl is MyMoustik)

{ this.nbMoustik++;
((MyMoustik)botl) .FSM.Update() ;

}

fsm.Update () ;

public bool goToBotsFromNeedles () {

}

public bool goToBotsFromWait () {

public bool goToNeedlesFromBots () {

public bool goToNeedlesFromSoldiers() {

public bool goToNeedlesFromWait () {

public bool goToWaitFromBots () {

Page |20

COMP 522 — MODELLING & SIMULATION — FALL 2006

Project Final Report — Game Al synthesis

public class FSMStateBuildNeedlesAT

public class FSMStateBuildBotsAI

{

{

{

public bool goToWaitFromNeedles () {

}

public class FSMStateBuildSoldierAT

public override void Update () {

}

public override void Enter ()

{
}

public override void Exit ()

{
}

public override Type getNextTransition () {
MyAI MyAI_var = (MyAI)owner;

if

}

(MyAI_var.goToNeedlesFromSoldiers ()

FSMState

== true)

return typeof (FSMStateBuildNeedlesATI);

return this.GetType();

public override

}

public override

}

public override

}

public override

void Update() {

void Enter () {
void Exit () {

Type getNextTransition () {

MyAI MyAI_var = (MyAI)owner;

if

}
if

}

(MyAI_var.goToWaitFromNeedles ()

return typeof (FSMStateWaitATI);

(MyAI_var.goToBotsFromNeedles ()

FSMState

true)

== true)

return typeof (FSMStateBuildBotsATI);

return this.GetType();

public

}
public
}
public

}
public

override

override

override

override

FSMState

void Update() {

void Enter () {
void Exit () {

Type getNextTransition()

{

{

{

{

Page |21

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

MyAI MyAI_var = (MyAI)owner;

if (MyAI_var.goToWaitFromBots() == true) {
return typeof (FSMStateWaitATI);

}

if (MyAI_var.goToNeedlesFromBots() == true) {
return typeof (FSMStateBuildNeedlesAI);

}

return this.GetType();

public class FSMStateWaitAI : FSMState
{

public override void Update () {
}
public override void Enter () {
}
public override void Exit () {
}
public override Type getNextTransition() {
MyAI MyAI_var = (MyAI)owner;
if (MyAI_var.goToNeedlesFromWait () == true) {
return typeof (FSMStateBuildNeedlesATI);
}
if (MyAI_var.goToBotsFromWait () == true) {
return typeof (FSMStateBuildBotsATI);
}
return this.GetType();

Page |22

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

IV] Overview of the simulation

m Project Hoshimi 2D Viewer - ConcoursEFREI3 o066 M Praject Hoshimi 2D Viewer - GoncoursEFREI3 - Turn: 89 066
Sever: 1921661226 Conneat R[] severv: 12161226 comen 200m
AlguerilonEfrei3 AlgueillonE fred3 DLLSquall

Scoe: 5

Objectives | Values & Obiectives Values Objectives | Values

A
A A
0.0 w0
o400 10
08-26 2.0
c18-18 500
c28-10 10
0155 10
co15-0 10
s 10
s 10
c215-0 10
c215-0 10
0280 10
0280 10
A010-0 10
10
10
SendServerState Player: 21766ms Infamatianb - 17;
SendGemeDescrption Player 21 a7 -
Project Hoshimi 2D Viewer - ConcoursEFREIS - Turn: 357 (6] Project Hoshimi 2D Wiewer - ConcoursEFREI3 - Turn: 563 066
Server IP: 1921681224 Gonnect (@] zoom: SN -] sewverte: 1521681224 Comnect [@]z00m
AguerllonE eid DLLS qual Aguerlor€irei3 DULSqual
Scoe: 660 Soore: 395 3 Score 1105
Objectives | Values
i
A
20 20
Co40-100 1-0
5850 2.0
caso 50-100
cis-0 10
C515-20 10
C515-20 1-50
£315-0 1-50
£315-0 1-0
C415-0 1-0
C415-0 1-50
AD26-0 1-50
AD28-0 1-50
A010-0 1-50
C1 40-100 1-50
C240-100 1-50
c340-0 50-100
co40-0 50-100
Player: E234ms nformation b : 15 Floyei2 113750ms lnomalionlb - 12:
Playe2 E23f4ms nfomation b : 15 Playei2 42

Praject Hoshimi 2D Wiewer - CancaursEFREIS - Turn: 861 Praject Hoshimi 2D Viewer - Con coursEFREI3 - Turn: 1500

BlgerlonEfed DLLSqual AguerlonEfei3
Scoe: 1425 1540 Scoe 1885
Gbiotives | Vaues Obiscives | Vakes | || Objecies | Vahes Obiectves | Volues
A A X
A A A
20 w0 co40-100
cos0-100 0 c108-60
c68-50 cot5-20
c78-60 w0-100 ci015-20
cos-60 150 co1s-20
ce1s-0 18 c14-100
ce15-0 150 C340-100
71520 150 C540-100
71520 10 200
ce15.20 10 co8-60
co15.20 150 co8-60
c1e0-100 150 cs15-20
C240-100 150 ci015-20
C340-100 150 cots-20
Cas0-100 150 c240-100
Cs40-100 150 ci40-100
Co40-40 50-100 Cs40-100
c740-0 0100 c740-100
50-100
50-100
50-100
50-100
Playerz: 141750ns nfomatonNb: 11: Player2: 3051875 rfcmation; B - onns wouve pss dz poit hashiri;
Playerz 141 i : o e touve pas de pon hoshim:

Page |23

COMP 522 — MODELLING & SIMULATION — FALL 2006
Project Final Report — Game Al synthesis

Conclusion

We successfully create an intelligent and efficient player that wins
against another one. As a consequence, the aim of this project is
fulfilled: we extended Atom3 formalism to give to developers an easy
solution to define and model their artificial intelligence and to

automatically generate c# code.

This project gives me the will to keep on developing my artificial
intelligence powered by Atom3. This is the reason why, | have
registered for the next session of the project Hoshimi programming
battle and why the code source of the player realized for this project

doesn’t appear online.

Player 2 win!

£ 100

Page |24

