
Timed Discrete Event Modelling and Simulation
� extend State Automata with “time in state”

� equivalent to Event Graphs “time to transition”

� schedule events

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 1/54

(timed) Discrete Event Models

red
50

green
100

yellow
15

δ

δ

δ

to_red to_yellowto_green

schedule
in 15

schedule
in 50

schedule
in 100

yellow

red

green

to_red to_green to_yellow to_red

states

events

t50 100 15

state trajectory

Finite State Automaton Event (Scheduling) Graph

red green

yellow

to_green

to_yellow

to_red

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 2/54

Discrete Event Modelling and Simulation
� Model : objects and relationships among objects

� Object : characterized by attributes to which values can be assigned

� Attributes:

– indicative

– relational

� Values: of a type

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 3/54

Time and State Relationships
� Indexing Attribute: enables state transitions

Time is most common.

� Instant: value of System Time at which the value of at least one attribute

of an object can be assigned.

� Interval: duration between two successive instants.

� Span: contiguous succession of one or more intervals.

� State of an object: enumeration of all attribute values at a particular

instant.

� State of the system: all object states at a particular instant.

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 4/54

Single Server Queueing System

Physical View

Queue Cashier

Departure

Arrival

Departure

Queue

Abstract View

Cashier
[ST distribution][IAT distribution]

Arrival

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 5/54

Queueing System State Trajectory

state=
queue_length x cashier_state

queue_length

T

1

2

0

10 20 30 40 50

cashier_state

Busy

Idle

T10 20 30 40 50

T

Input Events

Arrival

10 20 30 40 50

E1 E2

T

Output Events

Departure

10 20 30 40 50

E3 E4

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 6/54

Time and State Relationships
� Activity: state of an object over an interval

� Event: change in object state, occurring at an instant.

Initiates an activity

– Determined: occurrence based on time (“time event”)

– Contingent: based on system conditions (“state event”)

� Object activity: state of object between two events for that object

� Process: succession of states of object over a span

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 7/54

Event/Object Activity/Process

Cust2 Process

Cust1 Activity

Cust2 Arrival
Cust2 Start Queueing

Cust2 End pay cashier
Cust2 Leave

t

Cust2 End Queueing
Cust2 Start pay cashier

Cust2 Activity

Event

Cust1 Arrival
Cust1 Start pay cashier

Cust1 End pay cashier
Cust1 Leave

Cust1 Process

Cust2 Activity
queue pay cashier

pay cashier

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 8/54

Event Scheduling
� Identify objects and their attributes

� Identify system attributes (global)

� Define what causes changes in attribute value as event

� Write event routine for each event:

– modify state (attributes)

– schedule event(s) at t � ∆t � ∆t � 0

� Priorities for tie-breaking

� Event scheduling logic

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 9/54

Cashier-queue Event Scheduling Model

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 10/54

declare variables:

t : Time

queue_length : PosInt

cashier_state : {Idle, Busy}

declare events:

start, arrival, departure, end

define events:

start event:

/* scheduled first automatically by simulator */

/* initializations */

queue_length = 0

cashier_state = Idle

/* schedule end of simulation */

schedule end absolute end_time

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 11/54

/* schedule first arrival */

schedule arrival relative 0

arrival event:

schedule arrival relative Random(IATmean, IATspread)

if (queue_length == 0)

if (cashier_state == Idle)

cashier_state = Busy

schedule departure relative Random(SERVmean, SERVspread)

else

queue_length++

else /* queue_length != 0 */

queue_length++

departure event:

if (queue_length == 0)

cashier_state = Idle

else /* queue_length != 0 */

queue_length--

schedule departure relative Random(SERVmean, SERVspread)

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 12/54

end event:

/* terminates simulation */

/* process/output performance metrics */

print time, queue_length /* current */

print average_queue_length

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 13/54

Event Scheduling Kernel
start

initializations (schedule "start" event)

time flow mechanism:
select next event

from event list

event
routine

1

event
routine
"end"

output
performance

metrics;
cleanup;

...

end

event
routine

k

event
routine

k+1
... ...

Event List:
[(ev1,t1),(ev2,t2), ...]

state variables;
performance variables

time

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 14/54

Input Generation

A “model” of input (sequence of Inter Arrival Times):

� Trace driven

� Auto generating (bootstrapping)

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 15/54

Cashier-queue Event List

ARR
10

Current_event

State set: queue_size x cashier_statustime Event List

(0 , Idle)0

(0 , Busy)10

20 (1 , Busy)

30 (0 , Busy)

Initialized to:
 empty queue
 idle cashier
 arrival pre-scheduled at time 10

Process current event:
 set time to current event time
 update state:
 cashier busy
 schedule next arrival at t+IAT()
 schedule departure at t+ST()
 remove current event from list

Process current event:
 set time to current event time
 update state:
 cashier remains busy
 queue length increases
 schedule next arrival at t+IAT()
 remove current event from list

Process current event:
 set time to current event time
 generate departure output
 update state:
 cashier remains busy
 (customer from queue)
 queue length decreases
 schedule departure at t+ST()
 remove current event from list

DEP
50

ARR
100

Current_event

DEP
30

ARR
100

Current_event

ARR
20

DEP
30

Current_event

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 16/54

Queueing System State Trajectory

state=
queue_length x cashier_state

queue_length

T

1

2

0

10 20 30 40 50

cashier_state

Busy

Idle

T10 20 30 40 50

T

Input Events

Arrival

10 20 30 40 50

E1 E2

T

Output Events

Departure

10 20 30 40 50

E3 E4

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 17/54

Termination Conditions
� Empty Event List

Need to stop generating arrivals after tend when auto-generating arrivals

� Schedule Termination Event

– process statistics

– cleanup

– stop

– caveat: process all final events !

� use reserved priority

� re-schedule

� Similarly: schedule initialization/setup

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 18/54

Event Scheduling (dis)advantages
� advantage: run-time efficient

� disadvantage: hard to understand model

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 19/54

Activity Scanning (rule-based)

Activity:

� condition: must be satisfied for activity to take place.

Becomes true only at event times.

� actions: operations performed when condition becomes true

Time-advance mechanism:

� fixed time-step

Also known as Two Phase Approach

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 20/54

Cashier-queue Activity Scanning Model

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 21/54

declare (and initialize) variables:

t : Time

queue_length : PosInt = 0

cashier_state : {Idle, Busy} = Idle

t_arrival : Time = 0

t_depart : Time = plusInf

declare activities:

queue_pay, depart, end

queue_pay activity

condition: t >= t_arrival

actions:

if (queue_length == 0)

if (cashier_state == Idle)

keep queue_length == 0

cashier_state = Busy

t_depart = t + Random(SERVmean, SERVspread) /* service time */

else

queue_length++

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 22/54

else /* queue_length != 0 */

queue_length++, keep cashier_state == Busy

t_arrival = t + Random(IATmean, IATspread) /* inter arrival time */

depart activity

condition: t >= t_departure

actions:

if (queue_length == 0)

cashier_state = Idle

else /* queue_length != 0 */

queue_length--, keep cashier_state == Busy

t_depart = t + Random(SERVmean, SERVspread) /* service time */

end activity

condition: t >= t_end

actions:

print t, queue_length /* current */

print avg_queue_length /* performance metric */

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 23/54

Activity Scanning

start

initializations

time flow mechanism:
discrete time step

activity
1

activity
"end"

end

activity
k

activity
k+1... ...

state variables;
performance variables

condition

actions

condition

actions

condition

actions

condition

activity scan

phase 1

phase 2

output
performance

metrics;
cleanup;

...

discrete time variable

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 24/54

Activity Scanning (dis)advantages
� advantage: declarative model

� disadvantages:

– inaccurate if changes occur in between time-steps

– run-time inefficient (fixed time-step)

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 25/54

Three Phase Approach
� Bound to occur activities: unconditional state changes. Pre-scheduled.

� Conditional activites

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 26/54

Three Phase Approach
start

initializations

time flow mechanism:
select earliest time on EL

activity
C"end"

end

state variables;
performance variables

condition

actions

A phase

Event List (EL):
[(activityB1,t1),(activityB2,t2), ...]execute all B activities

on EL due now
B phase

activity
B"end"...

actions
output

performance metrics;
cleanup;

...

time

activity
C1

activity
Ck

activity
C(k+1)... ...

condition

actions

condition

actions

condition

actions

activity scan C phase

activity
B1

activity
Bk

activity
B(k+1)... ...

actions actions actions

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 27/54

Three Phase Approach (dis)advantages
� advantage: performance added to Activity Scanning

� disadvantage: mixing two views

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 28/54

Process Interaction Simulation Kernel
� Thomas J. Schriber. Simulation Using GPSS “The Red Book”. Wiley,

1974.

� Thomas J. Schriber. Simulation Using GPSS/H. Wiley, 1990.

� http://isgwww.cs.uni-magdeburg.de/˜pelo/s1e/sa5/sa52.shtml

� GPSS World http://www.minutemansoftware.com/

� AToM3 modelling GUI http://atom3.cs.mcgill.ca/

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 29/54

GPSS Process Interaction Simulation Kernel
Data Structures: chains. A transactions is on exactly one chain at a time !

� (1) Current Events Chain (CEC):
Transactions, waiting for a condition, at current time.

� (1) Future Events Chain (FEC):

Transactions waiting for a known future time.

� (0 . . . n) User Chain (UC):

Transactions waiting to be UNLINKed by a user transaction.

� (0 . . . m) Interrupt Chain (IC):

Transactions waiting for the end of an interrupt.

� (0 . . . p) Match Chain (MC):
Transactions waiting for a (Match, Assemble, Gather) rendezvous.

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 30/54

Transaction Life
� A transaction moves through GPSS blocks (as far as possible).

� Internally, its structure is on exactly one of the chains.

� Structure of a transaction:

unique Xact ID, current block, next block (attempt), move time, priority,

. . .

� Ordering:

– On CEC: decreasing priority.

– On FEC: increasing move time, FIFO(FCFS) irrespective of priority.

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 31/54

Process Interaction: Transaction Life

Transaction Creation

Transaction Destruction

IAT=0

CEL FEL
ADVANCE

move time = clock time

TERMINATE

Y N

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 32/54

GPSS Process Interaction Simulation Procedure

Initializations

output
performance metrics;

cleanup;
...

FEL: [xact1,x1ct2, ...]

CEL

xact1’
xact2’
xact3’

.

.

.

increasing move-time

increasing priority

start

end

Clock Update Phase

Scan Phase

more
xacts to move ?

terminate
simulation ?

current time =
move time of first xact on
Future Events List (FEL)

transfer all xacts with
move-time = current time
to the Current Events List;

order by priority

move next object on CEL
through as far as possible

through its process description

Process Interaction model
(e.g., GPSS block diagram)

 GENERATE 10, 5
 QUEUE wait
 SEIZE cashier
 DEPART wait
 ADVANCE 5, 3
 RELEASE cashier
 TERMINATE 15,3

Q
Q

Y

N

Y

N
10,5

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 33/54

Operational Semantics of
Process-oriented Simulation Languages: πDemos

� Simula-style

� Operational semantics (Plotkin)

� Scheduling of Events, Synchronisation

� Birtwistle and Tofts (SCS Transactions, 10(4), 1994, 299-333)

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 34/54

Cashier-Queue: GPSS Process Interaction View

 GENERATE 10, 5
 QUEUE wait
 SEIZE cashier
 DEPART wait
 ADVANCE 5, 3
 RELEASE cashier
 TERMINATE 1

10,5

5,3

Q

Q

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 35/54

Process Interaction (dis)advantages
� advantage: declarative model, high-level “process view”

� disadvantage: rather inefficient

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 36/54

General disadvantages
� (here) not formally defined, is possible

� non-modular, is possible

� DEVS formalism

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 37/54

World Views: Classification

‘‘Discrete’’ Formalisms

Discrete Event Formalisms

Statecharts

DEVS

Event Scheduling

Activity
 Scanning

Process Interaction

Discrete Time Formalisms

Finite State
Automata

Difference
Equations

Three Phase
Approach

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 38/54

(Pseudo-) Random-number Generators
� SY S model is deterministic + random constructs

� randomness � not enough detail known or don’t care

� randomness: characterized by distribution

� In SY S: draw from distribution and

Monte-Carlo run multiple deterministic simulations.

� Alternatives:

– Transform to deterministic.

– Markov Chains (analytical).

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 39/54

Probability Distributions
� Continuous vs. discrete

� Probability Density Function (f � x �)

� Cumulative Probability Function (F � X �)

� see probability course: Poisson, Erlang, . . .

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 40/54

Pseudo-random
� Sample from distribution (U � 0 � 1 �)

� Reproducability/comparison of experiments !

– science needs reproducable results

– makes debugging easier

– identical random numbers to compare different systems

� Quality of generator:

– appear uniformly distributed

– non-correlated

– fast and doesn’t need much storage

– long period, dense (full) coverage

– provision for streams (subsegments)

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 41/54

Linear Congruential Generators

Zi	 � aZi
 1 � c � mod m

m is modulus

a is multiplier

c is increment

Z0 is seed

c	 0 is called multiplicative LCG

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 42/54

Generators ctd.
� Composite Generators

� Tausworthe generators (operate on bits)

� L’Ecuyer, Devroye (non-uniform)

� Testing RNG: empirical vs. theoretical

� References: Knuth, Law & Kelton

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 43/54

Marse and Roberts’ portable RNG

Z � i �	 � 630360016 � Z � i
 1 � � mod � 231
 1 �

� Prime modulus multiplicative linear congruential generator.

� Based on Fortran UNIRAN code.

� Multiple (100) streams are supported with seeds spaced 100,000 apart.

� Include file: rand.h

� C file: rand.c

� Example use: randtest.c

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 44/54

Non-uniform continuously distributed RNG

Inverse Transformation Method

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 45/54

Gathering Statistics (report generation)

1. counters

2. summary measures

3. utilization

4. occupancy

5. distributions and transit times

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 46/54

Counters

In all previous examples: keep/update counters (as state vars) !

� numbers of entities of different types in the system

� number of times a particular event occurred

� basis for statistics (performance metrics)

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 47/54

Summary Measures
� minima and maxima:

compare new values to current min and max, update when necessary

� mean of a set of N observations xi � i	 1 � 2 ��� � � � N

m	 1
N

N

∑
i� 1

xi

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 48/54

Summary Measures (ctd.)
� standard deviation (from mean)

s	 1
N
 1

N

∑
i� 1

� m
 xi � 2

– need to calculate m first � need to keep all observations

– sum of squares may grow very large (accuracy �)

N

∑
i� 1

� m
 xi � 2	
N

∑
i� 1

x2
i

 Nm2

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 49/54

Utilization

The fraction (or %) of time each individual entity is engaged

idle

busy

t_b t_et_start t_end
t_b t_e

1 2 i N

time

U	 1
tend
 tstart

N

∑
i� 1

� te
 tb � i

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 50/54

Average Use and Occupancy

for groups and classes of entities

t_i t_i+1t_start t_end
t_b t_e

time

0

2

4

6

n

MAX

i

n_i

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 51/54

Average Use and Occupancy (ctd.)
� Average use over time (ti are times of change)

A	 1
tend
 tstart

N

∑
i� 1

ni � ti � 1
 ti �

Example use: average queue length.

� Occupancy: average number in use with respect to MAX

O	 A
MAX

No bookkeeping of individual entity information required, only total use (ni)

and when change occurs. This, as opposed to for example average transit

time computation where individual times must be kept.

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 52/54

Distributions and Transit Times

underflow
zone

overflow
zone

N intervals

L L+∆ L+2∆ L+(N-1)∆

∆

...

Lower Limit Upper Limit

Number of intervals N, Uniform interval size ∆, Lower tabulation limit L.

Implementation: table of interval counters.

Global accumulation: number of entries, sum of entries, sum of squares.

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 53/54

Distributions and Transit Times (ctd.)
� Transit times: use clock as time stamp, enter in table at end of transit.

� Distribution of number of entitities: measure at uniform intervals of time.

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Discrete Event WorldViews 54/54

