
Timed Discrete Event Modelling and Simulation
� extend State Automata with “time in state”

� equivalent to Event Graphs “time to transition”

� schedule events
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(timed) Discrete Event Models
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Discrete Event Modelling and Simulation
� Model : objects and relationships among objects

� Object : characterized by attributes to which values can be assigned

� Attributes:

– indicative

– relational

� Values: of a type
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Time and State Relationships
� Indexing Attribute: enables state transitions

Time is most common.

� Instant: value of System Time at which the value of at least one attribute

of an object can be assigned.

� Interval: duration between two successive instants.

� Span: contiguous succession of one or more intervals.

� State of an object: enumeration of all attribute values at a particular

instant.

� State of the system: all object states at a particular instant.
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Single Server Queueing System
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Queueing System State Trajectory
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Time and State Relationships
� Activity: state of an object over an interval

� Event: change in object state, occurring at an instant.

Initiates an activity

– Determined: occurrence based on time (“time event”)

– Contingent: based on system conditions (“state event”)

� Object activity: state of object between two events for that object

� Process: succession of states of object over a span
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Event/Object Activity/Process
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Event Scheduling
� Identify objects and their attributes

� Identify system attributes (global)

� Define what causes changes in attribute value as event

� Write event routine for each event:

– modify state (attributes)

– schedule event(s) at t � ∆t � ∆t � 0

� Priorities for tie-breaking

� Event scheduling logic
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Cashier-queue Event Scheduling Model
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declare variables:

t : Time

queue_length : PosInt

cashier_state : {Idle, Busy}

declare events:

start, arrival, departure, end

define events:

start event:

/* scheduled first automatically by simulator */

/* initializations */

queue_length = 0

cashier_state = Idle

/* schedule end of simulation */

schedule end absolute end_time
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/* schedule first arrival */

schedule arrival relative 0

arrival event:

schedule arrival relative Random(IATmean, IATspread)

if (queue_length == 0)

if (cashier_state == Idle)

cashier_state = Busy

schedule departure relative Random(SERVmean, SERVspread)

else

queue_length++

else /* queue_length != 0 */

queue_length++

departure event:

if (queue_length == 0)

cashier_state = Idle

else /* queue_length != 0 */

queue_length--

schedule departure relative Random(SERVmean, SERVspread)
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end event:

/* terminates simulation */

/* process/output performance metrics */

print time, queue_length /* current */

print average_queue_length
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Event Scheduling Kernel
start

initializations (schedule "start" event)

time flow mechanism:
select next event

from event list

event
routine

1

event
routine
"end"

output
performance 

metrics;
cleanup;

...

end

event
routine

k

event
routine

k+1
... ...

Event List:
[(ev1,t1),(ev2,t2), ...]

state variables;
performance variables

time
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Input Generation

A “model” of input (sequence of Inter Arrival Times):

� Trace driven

� Auto generating (bootstrapping)
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Cashier-queue Event List
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 arrival pre-scheduled at time 10

Process current event:
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 update state:
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 schedule next arrival at t+IAT()
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 update state:
   cashier remains busy
   queue length increases
 schedule next arrival at t+IAT()
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Queueing System State Trajectory

state=
queue_length x cashier_state 
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Termination Conditions
� Empty Event List

Need to stop generating arrivals after tend when auto-generating arrivals

� Schedule Termination Event

– process statistics

– cleanup

– stop

– caveat: process all final events !

� use reserved priority

� re-schedule

� Similarly: schedule initialization/setup
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Event Scheduling (dis)advantages
� advantage: run-time efficient

� disadvantage: hard to understand model
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Activity Scanning (rule-based)

Activity:

� condition: must be satisfied for activity to take place.

Becomes true only at event times.

� actions: operations performed when condition becomes true

Time-advance mechanism:

� fixed time-step

Also known as Two Phase Approach
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Cashier-queue Activity Scanning Model
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declare (and initialize) variables:

t : Time

queue_length : PosInt = 0

cashier_state : {Idle, Busy} = Idle

t_arrival : Time = 0

t_depart : Time = plusInf

declare activities:

queue_pay, depart, end

queue_pay activity

condition: t >= t_arrival

actions:

if (queue_length == 0)

if (cashier_state == Idle)

keep queue_length == 0

cashier_state = Busy

t_depart = t + Random(SERVmean, SERVspread) /* service time */

else

queue_length++
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else /* queue_length != 0 */

queue_length++, keep cashier_state == Busy

t_arrival = t + Random(IATmean, IATspread) /* inter arrival time */

depart activity

condition: t >= t_departure

actions:

if (queue_length == 0)

cashier_state = Idle

else /* queue_length != 0 */

queue_length--, keep cashier_state == Busy

t_depart = t + Random(SERVmean, SERVspread) /* service time */

end activity

condition: t >= t_end

actions:

print t, queue_length /* current */

print avg_queue_length /* performance metric */
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Activity Scanning

start

initializations

time flow mechanism:
discrete time step

activity
1

activity
"end"

end

activity
k

activity
k+1... ...

state variables;
performance variables

condition

actions

condition

actions

condition

actions

condition

activity scan

phase 1

phase 2

output
performance

metrics;
cleanup;

...

discrete time variable
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Activity Scanning (dis)advantages
� advantage: declarative model

� disadvantages:

– inaccurate if changes occur in between time-steps

– run-time inefficient (fixed time-step)
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Three Phase Approach
� Bound to occur activities: unconditional state changes. Pre-scheduled.

� Conditional activites
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Three Phase Approach
start

initializations

time flow mechanism:
select earliest time on EL

activity
C"end"

end

state variables;
performance variables

condition

actions

A phase

Event List (EL):
[(activityB1,t1),(activityB2,t2), ...]execute all B activities

on EL due now
B phase

activity
B"end"...

actions
output

performance metrics;
cleanup;

...

time

activity
C1

activity
Ck

activity
C(k+1)... ...

condition

actions

condition

actions

condition

actions

activity scan C phase

activity
B1

activity
Bk

activity
B(k+1)... ...

actions actions actions
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Three Phase Approach (dis)advantages
� advantage: performance added to Activity Scanning

� disadvantage: mixing two views
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Process Interaction Simulation Kernel
� Thomas J. Schriber. Simulation Using GPSS “The Red Book”. Wiley,

1974.

� Thomas J. Schriber. Simulation Using GPSS/H. Wiley, 1990.

� http://isgwww.cs.uni-magdeburg.de/˜pelo/s1e/sa5/sa52.shtml

� GPSS World http://www.minutemansoftware.com/

� AToM3 modelling GUI http://atom3.cs.mcgill.ca/
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GPSS Process Interaction Simulation Kernel
Data Structures: chains. A transactions is on exactly one chain at a time !

� (1) Current Events Chain (CEC):
Transactions, waiting for a condition, at current time.

� (1) Future Events Chain (FEC):

Transactions waiting for a known future time.

� (0 . . . n) User Chain (UC):

Transactions waiting to be UNLINKed by a user transaction.

� (0 . . . m) Interrupt Chain (IC):

Transactions waiting for the end of an interrupt.

� (0 . . . p) Match Chain (MC):
Transactions waiting for a (Match, Assemble, Gather) rendezvous.
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Transaction Life
� A transaction moves through GPSS blocks (as far as possible).

� Internally, its structure is on exactly one of the chains.

� Structure of a transaction:

unique Xact ID, current block, next block (attempt), move time, priority,

. . .

� Ordering:

– On CEC: decreasing priority.

– On FEC: increasing move time, FIFO(FCFS) irrespective of priority.
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Process Interaction: Transaction Life

Transaction Creation

Transaction Destruction

IAT=0

CEL FEL
ADVANCE

move time = clock time

TERMINATE

Y N
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GPSS Process Interaction Simulation Procedure

Initializations

output
performance metrics;

cleanup;
...

FEL: [xact1,x1ct2, ...]

CEL

xact1’
xact2’
xact3’

.

.

.

increasing move-time

increasing priority

start

end

Clock Update Phase

Scan Phase

more
xacts to move ?

terminate
simulation ?

current time =
move time of first xact on
Future Events List (FEL)

transfer all xacts with 
move-time = current time 
to the Current Events List;

order by priority

move next object on CEL
through as far as possible

through its process description

Process Interaction model
(e.g., GPSS block diagram)

       GENERATE  10, 5
       QUEUE     wait
       SEIZE     cashier
       DEPART    wait
       ADVANCE   5, 3
       RELEASE   cashier
       TERMINATE 15,3

Q
Q

Y

N

Y

N
10,5
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Operational Semantics of
Process-oriented Simulation Languages: πDemos

� Simula-style

� Operational semantics (Plotkin)

� Scheduling of Events, Synchronisation

� Birtwistle and Tofts (SCS Transactions, 10(4), 1994, 299-333)
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Cashier-Queue: GPSS Process Interaction View

       GENERATE  10, 5
       QUEUE     wait
       SEIZE     cashier
       DEPART    wait
       ADVANCE   5, 3
       RELEASE   cashier
       TERMINATE 1

10,5

5,3

Q

Q
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Process Interaction (dis)advantages
� advantage: declarative model, high-level “process view”

� disadvantage: rather inefficient
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General disadvantages
� (here) not formally defined, is possible

� non-modular, is possible

� DEVS formalism
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World Views: Classification

‘‘Discrete’’ Formalisms

Discrete Event Formalisms

Statecharts

DEVS

Event Scheduling

Activity
 Scanning

Process Interaction

Discrete Time Formalisms

Finite State
Automata

Difference
Equations

Three Phase
Approach
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(Pseudo-) Random-number Generators
� SY S model is deterministic + random constructs

� randomness � not enough detail known or don’t care

� randomness: characterized by distribution

� In SY S: draw from distribution and

Monte-Carlo run multiple deterministic simulations.

� Alternatives:

– Transform to deterministic.

– Markov Chains (analytical).
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Probability Distributions
� Continuous vs. discrete

� Probability Density Function ( f � x � )

� Cumulative Probability Function (F � X � )

� see probability course: Poisson, Erlang, . . .
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Pseudo-random
� Sample from distribution (U � 0 � 1 � )

� Reproducability/comparison of experiments !

– science needs reproducable results

– makes debugging easier

– identical random numbers to compare different systems

� Quality of generator:

– appear uniformly distributed

– non-correlated

– fast and doesn’t need much storage

– long period, dense (full) coverage

– provision for streams (subsegments)
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Linear Congruential Generators

Zi	 � aZi
 1 � c � mod m

m is modulus

a is multiplier

c is increment

Z0 is seed

c	 0 is called multiplicative LCG
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Generators ctd.
� Composite Generators

� Tausworthe generators (operate on bits)

� L’Ecuyer, Devroye (non-uniform)

� Testing RNG: empirical vs. theoretical

� References: Knuth, Law & Kelton
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Marse and Roberts’ portable RNG

Z � i �	 � 630360016 � Z � i
 1 � � mod � 231
 1 �

� Prime modulus multiplicative linear congruential generator.

� Based on Fortran UNIRAN code.

� Multiple (100) streams are supported with seeds spaced 100,000 apart.

� Include file: rand.h

� C file: rand.c

� Example use: randtest.c
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Non-uniform continuously distributed RNG

Inverse Transformation Method
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Gathering Statistics (report generation)

1. counters

2. summary measures

3. utilization

4. occupancy

5. distributions and transit times
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Counters

In all previous examples: keep/update counters (as state vars) !

� numbers of entities of different types in the system

� number of times a particular event occurred

� basis for statistics (performance metrics)
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Summary Measures
� minima and maxima:

compare new values to current min and max, update when necessary

� mean of a set of N observations xi � i	 1 � 2 ��� � � � N

m	 1
N

N

∑
i� 1

xi
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Summary Measures (ctd.)
� standard deviation (from mean)

s	 1
N
 1

N

∑
i� 1

� m
 xi � 2

– need to calculate m first � need to keep all observations

– sum of squares may grow very large (accuracy � )

N

∑
i� 1

� m
 xi � 2	
N

∑
i� 1

x2
i


 Nm2
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Utilization

The fraction (or %) of time each individual entity is engaged

idle

busy

t_b t_et_start t_end
t_b t_e

1 2 i N

time

U	 1
tend
 tstart

N

∑
i� 1

� te
 tb � i
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Average Use and Occupancy

for groups and classes of entities

t_i t_i+1t_start t_end
t_b t_e

time

0

2

4

6

n

MAX

i

n_i
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Average Use and Occupancy (ctd.)
� Average use over time (ti are times of change)

A	 1
tend
 tstart

N

∑
i� 1

ni � ti � 1
 ti �

Example use: average queue length.

� Occupancy: average number in use with respect to MAX

O	 A
MAX

No bookkeeping of individual entity information required, only total use (ni)

and when change occurs. This, as opposed to for example average transit

time computation where individual times must be kept.
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Distributions and Transit Times

underflow 
zone

overflow 
zone

N intervals

L L+∆ L+2∆ L+(N-1)∆

∆

...

Lower Limit Upper Limit

Number of intervals N, Uniform interval size ∆, Lower tabulation limit L.

Implementation: table of interval counters.

Global accumulation: number of entries, sum of entries, sum of squares.
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Distributions and Transit Times (ctd.)
� Transit times: use clock as time stamp, enter in table at end of transit.

� Distribution of number of entitities: measure at uniform intervals of time.
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