Statecharts aka Harel Charts

Visual Modelling

- 1. Higraph formalism
- 2. Statechart formalism (combines Higraphs and State Automata)

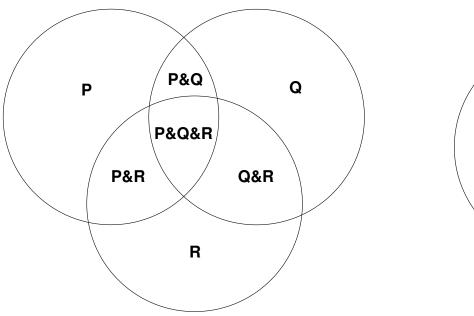
Diverse applications.

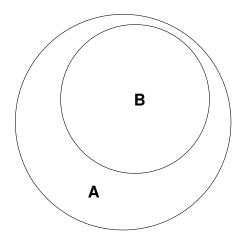
In particular: concurrent systems behaviour

Higraphs: Visualising Information

- complex
- non-quantitative, structural
- topological, not geometrical
- Euler
 - Venn diagrams (Jordan curve: inside/outside): enclosure, intersection
 - graphs (nodes, edges: binary *relation*); hypergraphs

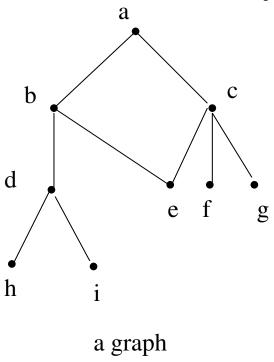
Venn diagrams, Euler circles

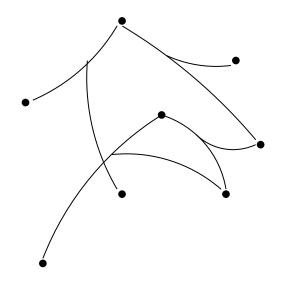




- topological notions (syntax):
 enclosure, exclusion, intersection
- Used to represent (denote) *mathematical* set operations: union, difference, intersection

Hypergraphs





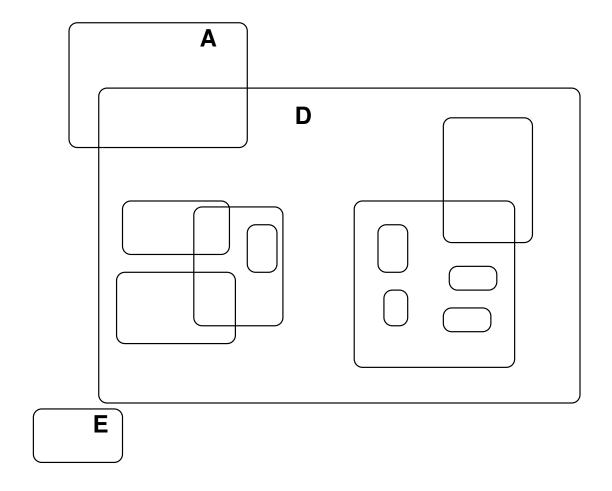
a hypergraph

- topological notion (syntax): connectedness
- Used to represent (denote) *relations* between sets.
- Hyperedges: non longer binary relation ($\subseteq X \times X$): $\subseteq 2^X$ (undirected), $\subseteq 2^X \times 2^X$ (directed).

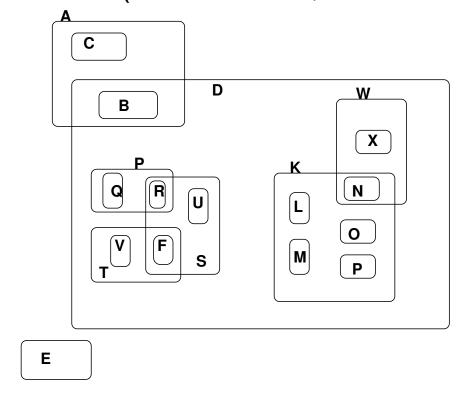
Higraphs: combining graphs and Venn diagrams

- sets + cartesian product
- hypergraphs

Blobs: set inclusion, not membership

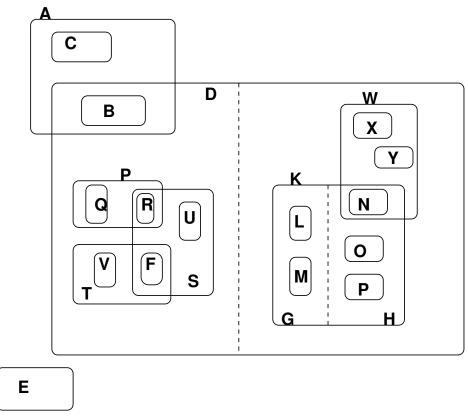


Unique Blobs (atomic sets, no intersection)



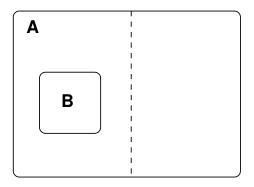
- atomic blobs are identifiable sets
- other blobs are union of enclosed sets (e.g., $K = L \cup M \cup N \cup O \cup P$)
- empty space meaningless, identify intersection (e.g., $N = K \cap W$)

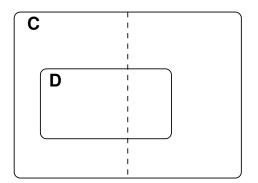
Unordered Cartesian Product: Orthogonal Components



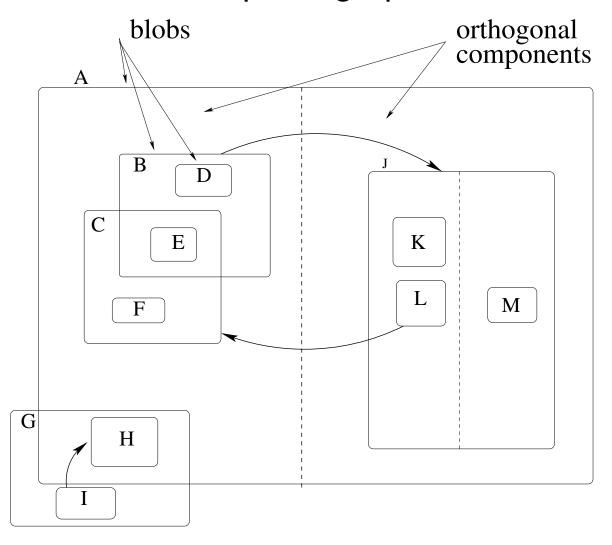
$$K = G \times H = H \times G = (L \cup M) \times (N \cup O \cup P)$$

Meaningless syntactic constructs

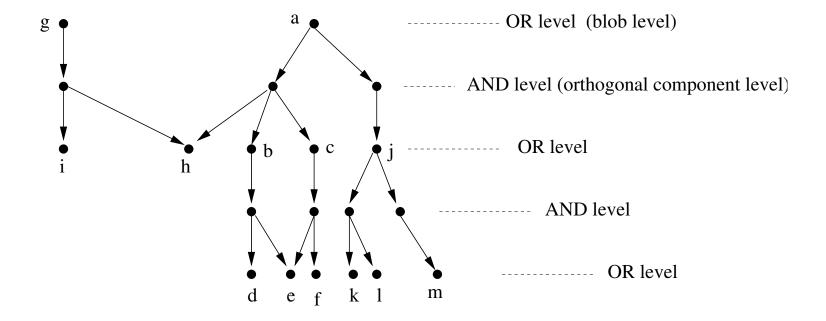




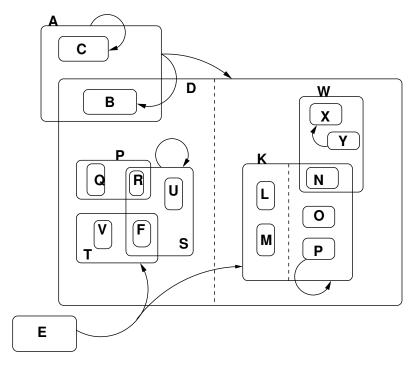
Simple Higraph



Induced Acyclic Graph (blob/orth comp alternation)

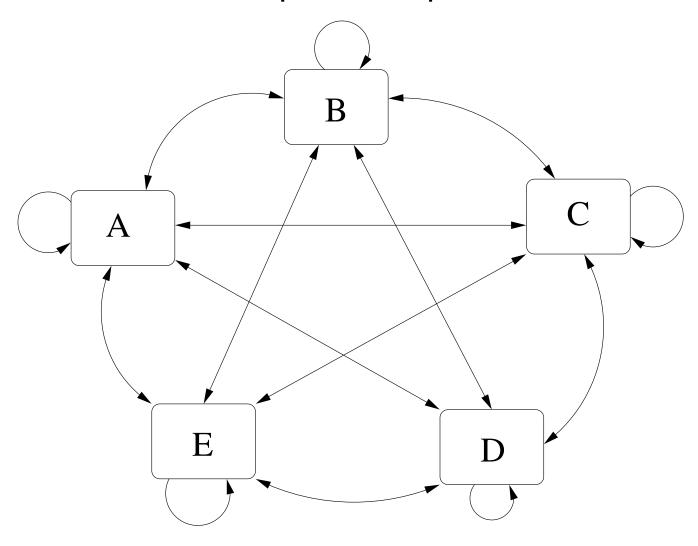


Adding (hyper) edges

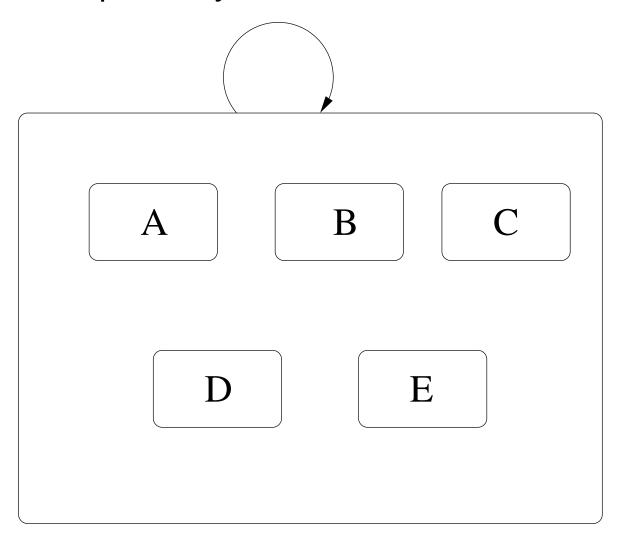


- *hyper*edges
- attach to contour of any blob
- inter-level possible (e.g., denote global variables binding)

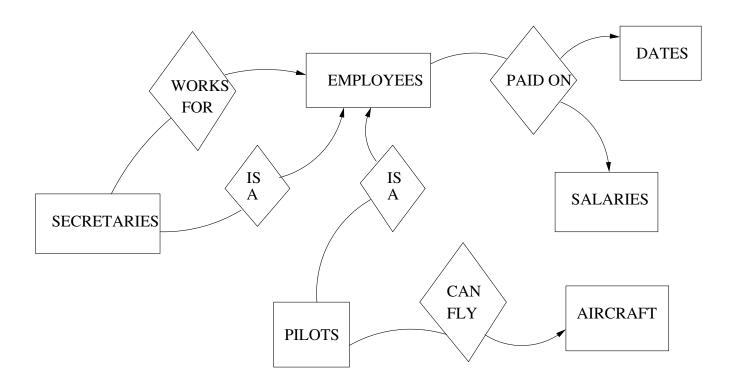
Clique Example



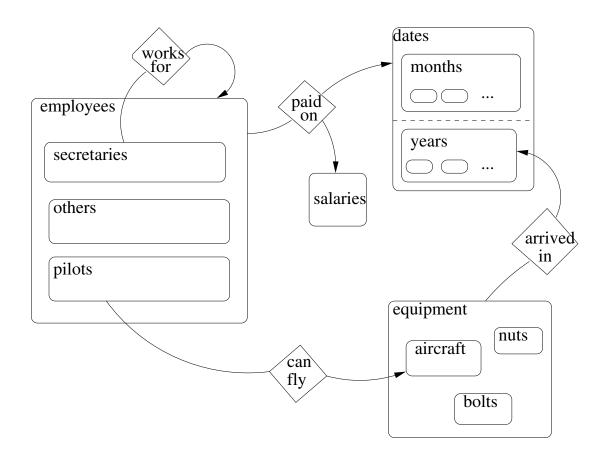
Clique: fully connected semantics



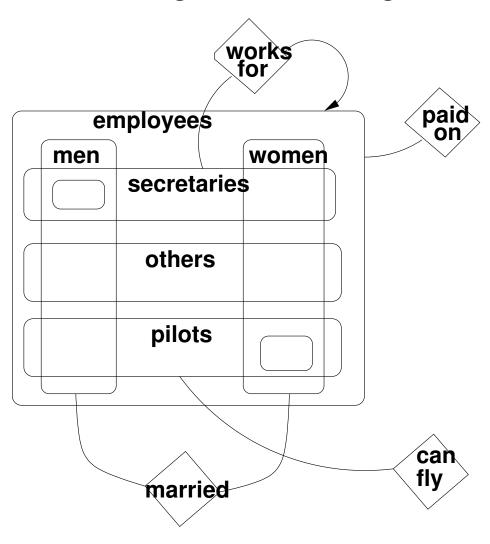
Entity Relationship Diagram (is-a)



Higraph version of E-R diagram



Extending the E-R diagram



Formally (syntax)

A higraph *H* is a quadruple

$$H = (B, E, \sigma, \pi)$$

B: finite set of all unique blobs

E: set of hyperedges

$$\subseteq X \times X, \subseteq 2^X, \subseteq 2^X \times 2^X$$

The subblob (direct descendants) function σ

$$\sigma: B \to 2^B$$

$$\sigma^{0}(x) = \{x\}, \ \sigma^{i+1} = \bigcup_{y \in \sigma^{i}(x)} \sigma(y), \ \sigma^{+}(x) = \bigcup_{i=1}^{+\infty} \sigma^{i}(x)$$

Subblobs⁺ cycle free

$$x \not\in \sigma^+(x)$$

The partitioning function π associates equivalence relationship with x

$$\pi: B \to 2^{B \times B}$$

Equivalence classes π_i are orthogonal components of x

$$\pi_1(x), \pi_2(x), \ldots, \pi_{k_x}(x)$$

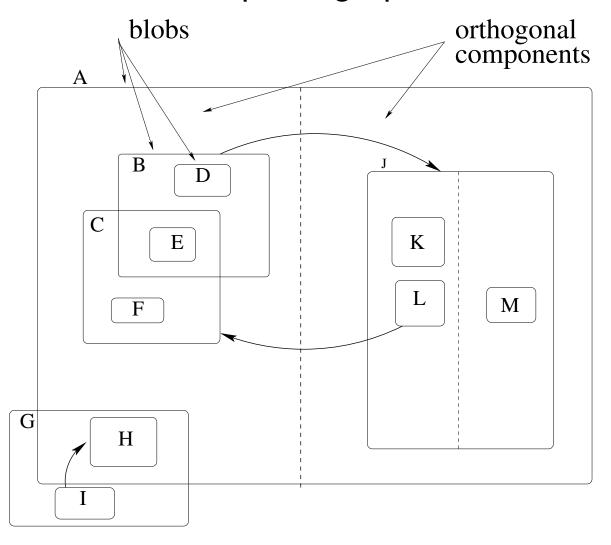
 $k_x = 1$ means a single orthogonal component (no partitioning)

Blobs in different orthogonal components of *x* are *disjoint*

$$\forall y, z \in \sigma(x) : \sigma^+(y) \cap \sigma^+(z) = \emptyset$$

unless in the same equivalence class

Simple Higraph



Induced Orthogonal Components

$$B = \{A, B, C, D, E, F, C, G, H, I, J, K, L, M\}$$

$$E = \{(I, H), (B, J), (L, C)\}$$

$$\rho(A) = \{B, C, H, J\}, \rho(G) = \{H, I\}, \rho(B) = \{D, E\}, \rho(C) = \{E, F\},$$

$$\rho(J) = \{K, L, M\}$$

$$\rho(D) = \rho(E) = \rho(F) = \rho(H) = \rho(I) = \rho(K) = \rho(L) = \rho(M) = \emptyset$$

$$\pi(J) = \{(K,K), (K,L), (L,L), (L,K), (M,M)\}$$

Induces equivalence classes $\pi_1(J) = \{K, L\}$ and $\pi_2(J) = \{M\}, \ldots$ These are the *orthogonal components*

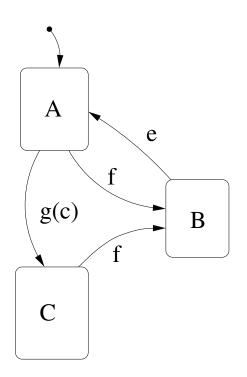
Higraph applications (add specific meaning)

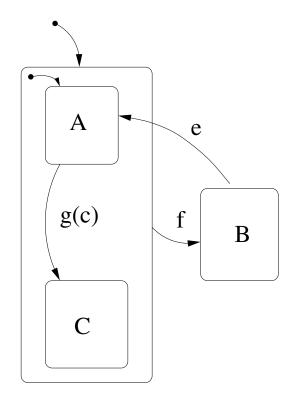
- 1. E-R diagrams
- 2. data-flow diagrams (activity diagrams) edges represent (flow of) data
- 3. inheritance
- 4. Statecharts

Statecharts = state diagrams + depth + orthogonality + broadcast

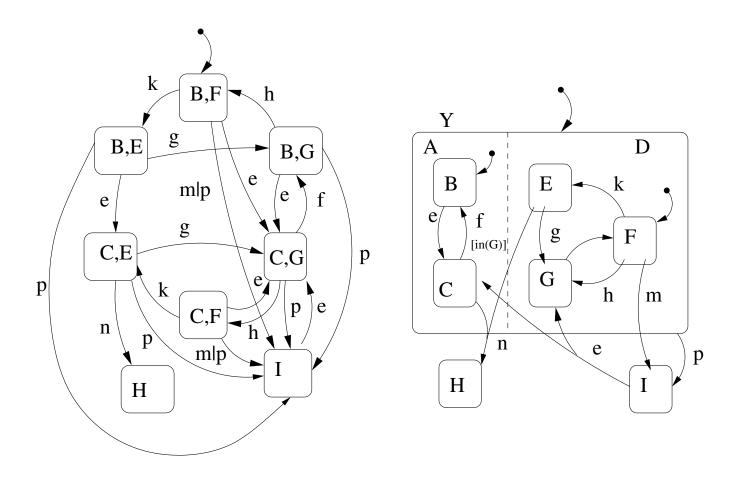
- Reactive Systems (event driven, react to internal and external stimuli)
- like Petri Nets, CSP, CCS, sequence diagrams, ...
- graphical but formal and rigourous for
 - analysis
 - code generation
- solve FSA problems:
 - flat \Rightarrow hierarchy \Rightarrow re-use
 - represent large number of transitions concisely
 - represent large number of (product) states concisely
 - sequential \Rightarrow concurrent

Depth (XOR), semantics through flattening

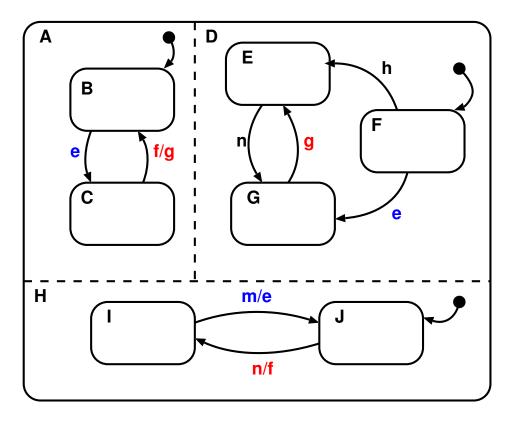




Orthogonality (AND), semantics through flattening

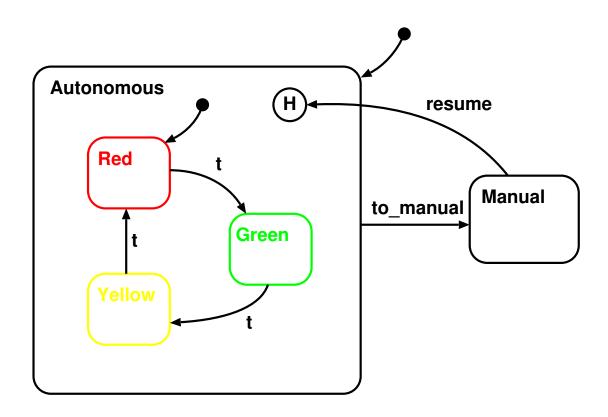


Broadcasting (output events)

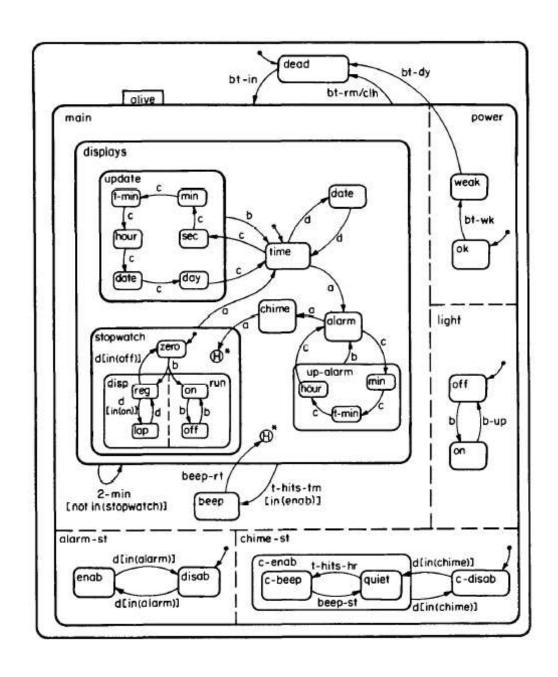


Input Segment: nmnn

History States



Stopwatch Example



Extensions

- time: after (10s)
- guards: [OC in(C)]
- parametrized events: ev (p1, p2)
- narrowcast: destination.ev(p1,p2),
 destination->ev(p1,p2)
- states vs. variables
- arrow: *R*, negative arrow: not *R*, absence of arrow: don't know
- don't know blobs
- Zoom outs (interface)