Distributed Collision Detection

Tom Chen
Project Presentation: Comp522
School of Computer Science
McGill University
December 13, 2008
Online Multiplayer Games

- Multiple stations connected through network
- Master objects
 - Controlled by player’s own station.
- Duplicate objects
 - Copies of master object that reside on other stations.
 - Receive master’s position through network connections.
Challenges

• Network Latency
 – Position updates from master arrived late.
 – Packet arrival rate is asynchronous with game’s frame rate.
 – Different latency between stations affects consistency between stations

• Bandwidth
 – Frequency of updates.
 – Size of packets.
Dead Reckoning

• Extrapolation
 – Packet arrived at t_0, with p_0, v_0 and a_0
 – Extrapolate p_1, v_1 and a_1 at given frame time
Network Latency

Station 1

Station 2

Low Latency

High Latency

High Latency with Dead Reckoning

Station 3

Station 4
Position History-Based Dead Reckoning

• PHBDR
 – Send position only.
 – Store received position in a history list.
 – Extrapolate using history positions.
 – Reduced bandwidth usage
Position History-Based Dead Reckoning

• First order extrapolation
 – Extrapolate p_1 using p_0 and p_{-1}
 – Good extrapolation for linear motion
Position History-Based Dead Reckoning

• Second order extrapolation
 – Extrapolate p_1 using p_0, p_{-1}, p_{-2}
 – Smooth extrapolation for non-linear motion
High Network Latency

- Each extrapolation create a small error
- Network latency are bursty and if 10 packets are late...
High Network Latency

• Extrapolation based on extrapolation ...
Non-Linear Motions

- Objects that are moving non-linearly are subject to higher error during high network latency.
Collision Detections

• With high latency during collision
 – Dead reckoning extrapolate the wrong position
 – Penetration
 – Inconsistency game state between stations
Local Correction

• During collisions, allow duplica to resolve collision locally.
• After collisions, master regain control of duplica.
Problem: False Collision

• Situation
 – High network latency
 – Local correction is on
 – Objects moving non-linearly with large errors...
False Collision
False Collision
False Collision
False Collision
False Collision
False Collision
Inconsistency
Motivation

• True Collision vs. False Collision
 – How to detect false collision?
 – When to turn on/off Local Correction?
• Ultimately, consistency among stations
 – All or none detects the collision
Proposal

• Observe Non-linear motions
 – Relationship between latency and distance error
Modeling and Simulation

• Build a online multiplayer game system model
• Allow fast prototyping with different strategies
• For the Comp 522 project:
 – Explore the Continuous Spatial distribution
 – Measure latency vs. distance error
Modeling and Simulation

- DEVS + Continuous Spatial Distribution
 - DEVS models the network and stations
 - Each station has a large 2D continuous spatial state that models the game
 - Games consist of objects that moves at continuous time
 - DEVS samples the game state at discrete time and output to graphic interface
Continuous Spatial Distribution

• Game objects
 – Continuous state in 2D space, \((x, y)\)
 – Moves from one state to the other under equations of motion in continuous time

\[
\begin{bmatrix}
\text{\[\bullet \rightarrow \bullet \]} \\
\end{bmatrix} = \begin{array}{c}
x = (x, y) \\
v = dx/dt \\
a = dv/dt
\end{array}
\]
Continuous time vs. Discrete Time

• Difficult to model continuous time

• Abstraction: Discretize time
 – Break time into discrete segments, Δt
 – Like what we did in Causal Block Diagram assignment
 – Size of Δt is the frame rate of the game
 – Smaller Δt, smoother animation
Continuous time vs. Discrete Time

![Diagram showing continuous and discrete time](image)
Continuous State

• If observe the state between each frame, objects may have different position
 – E.g. x is continuous
DEVS + Continuous Spatial Distribution

• Combine DEVS with Continuous spatial Distribution
 – Time advance $ta() = \Delta t$
 – Internal transition updates all game objects
 – Output function renders the objects
Simulator

Station

Game

Main Loop

Network

Connection

Connection

Station

Game

Main Loop

Monitor
Experiments

• Latency vs. average distance error
 – An object moves in circular motion
 – Measure distance error between Master and Duplica
 – Increase latency for each experiment
 – 10 seconds per experiment

• Expect a exponential growth of distance error
 – Duplica spiral out due to accumulation of errors
Latency

• Frame rate
 – 50 fps = 20ms per frame

• Latency
 – Zero latency if packets arrived at 0 to 20ms per packet.
 – Packet arrival rate from 21ms or greater will be out of sync with the frame rate
22ms/Packet
23ms/Packet
24ms/Packet
26ms/Packet
28ms/Packet
35ms/Packet
40ms/Packet
Average Distance Error

![Graph showing Average Distance Error vs Latency (ms). The graph displays a linear increase in average distance error with increasing latency.]
Average Distance Error

• Rate of change in average distance error decreases around 24 - 25ms per packet??
 – Need to investigate

• Possibilities
 – Buffer size
 – Incorrect network model
Conclusion

• Inconsistency in distributed collision detection is due to network latency.
• Discretize time to combine Continuous Spatial Distribution and DEVS.
• Unexpected average distance error growth
Future Work

• Provide mathematical relation between latency and average distance error.
• Improve the model.
• Implement different strategies to detect false collisions.