
Petri Nets

1. Finite State Automata

2. Petri net notation and definition (no dynamics)

3. Introducing State: Petri net marking

4. Petri net dynamics

5. Capacity Constrained Petri nets

6. Petri net models for . . .

� FSA

� Nondeterminism

� Data Flow Computation

� Communication Protocols
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7. Queueing Systems

8. Petri nets vs. State Automata

9. Analysis of Petri nets
� Boundedness

� Liveness and Deadlock

� State Reachability

� State Coverability

� Persistence

� Language Recognition

10. The Coverability Tree

11. Extensions: colour, time, . . .
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Finite State Automaton

� E � X � f � x0 � F �

� E is a finite alphabet

� X is a finite state set

� f is a state transition function,
f : X � E � X

� x0 is an initial state, x0� X

� F is the set of final states

Dynamics (x� is next state):

x� � f � x � e �
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FSA graphical notation: State Transition Diagram

Init End_1

End_0

1

0

1

0

1

0
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FSA Operational Semantics

/ <ANY><ANY>

<ANY>

Current State

2

4

3

1

/<COPIED><COPIED>

<COPIED>

Current State

2

4

3

1

<ANY>

1

/ <ANY><ANY><ANY> <ANY>

Current State

2

4

3 5

1

/<COPIED><COPIED>

<COPIED>
<COPIED>

Current State

2

4
3

5

1

::=

::=

::=

Rule 1 (priority 3)

Rule 2 (priority 1)

Rule 3 (priority 2)

Locate Initial Current State

State Transition

Local State Transition

condition:
matched(4).input == input[0]

action:
remove(input[0])

condition:
matched(4).input == input[0]

action:
remove(input[0])

<COPIED>

Current State

3

1

2
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Simulation steps
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Init End_1

End_0

1

0

1

0

1

0

Current State

Init End_1

End_0

1

0

1

0

1

0

Current State

Init End_1

End_0

1

0

1

0

1

0

Current State

Init End_1

End_0

1

0

1

0

1

0

Current State

Rule 1 Rule 2

Rule 2
Rule 2

Final Action
"Accept Input"

input 0

input 1
input 0

end of input
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State Automaton

� E � X � Γ � f � x0 �

� E is a countable event set

� X is a countable state space

� Γ � x � is the set of feasible or enabled events
x� X � Γ � x �� E

� f is a state transition function,
f : X � E � X , only defined for e� Γ � x �

� x0 is an initial state, x0� X

� E � X � Γ � f �

omits x0 and describes a class of State Automata.

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Petri Nets 8/69



State Automata for Queueing Systems

Physical View

Queue Cashier

Departure

Arrival

Departure

Queue

Abstract View

Cashier
[ST distribution][IAT distribution]

Arrival

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Petri Nets 9/69



State Automata for Queueing Systems:
customer centered

...0 1 2 3 4 5

a

d

a

d

a

d

a

d

a

d

a

d

E � 	 a � d 


X � 	 0 � 1 � 2 ��� � � 


Γ � x � � 	 a � d 
 �� x � 0 � Γ � 0 � � 	 a 


f � x � a � � x � 1 �� x � 0

f � x � d � � x� 1 �� x � 0
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State Automata for Queueing Systems:
server centered (with breakdown)

I B

s

c

b
r

D
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State Automata for Queueing Systems: server
centered (with breakdown)

E � 	 s � c � b � r 


Events: s denotes service starts, c denotes service completes, b denotes

breakdown, r denotes repair.

X � 	 I � B � D 


State: I denotes idle, B denotes busy, D denotes broken down.

Γ � I � � 	 s 
 � Γ � B � � 	 c � b 
 � Γ � D � � 	 r 


f � I � s � � B � f � B � c � � I � f � B � b � � D � f � D � r � � I
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Limitiations/extensions of State Automata
� Adding time ?

� Hierarchical modelling ?

� Concurrency by means of �

� States are represented explicitly

� Specifying control logic, synchronisation ?
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Petri nets
� Formalism similar to FSA

� Graphical notation

� C.A. Petri 1960s

� Additions to FSA:

– Explicitly (graphically) represent when event is enabled

� describe control logic

– Elegant notation of concurrency

– Express non-determinism
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Petri net notation and definition (no dynamics)

� P� T � A � w �

� P � 	 p1 � p2 ��� � � 
 is a finite set of places

� T � 	 t1 � t2 �� � � 
 is a finite set of transitions

� A � � P � T ��� � T � P � is a set of arcs

� w : A � � is a weight function

Note: no need for countable P and T .
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Derived Entities
� I � t j � � 	 pi : � pi � t j �� A 
 set of input places to transition t j

(� conditions for transition)

� O � t j � � 	 pi : � t j � pi �� A 
 set of output places from transition t j

(� affected by transition)

� Transitions� events

� similarly: input- and output-transitions for pi

� graphical representation: Petri net graph (multigraph)
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Example Petri net
� P � 	 H2 � O2 � H2O 


� T � 	 t 


� A � 	 � H2 � t � � � O2 � t � � � t � H2O � 


� w � � H2 � t � � � 2 � w � � O2 � t � � � 1 � � w � � t � H2O � � � 2

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Petri Nets 17/69



Pure Petri net
� No self-loops:

��� pi� P� t j� T : � pi � t j �� A � � t j � pi �� A

� Can convert impure to pure Petri net
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Impure to Pure Petri net
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Introducing State: Petri net Markings
� Conditions met ? Use tokens in places

� Token assignment� marking x

x : P � �

� A marked Petri net

� P� T � A � w � x0 �

x0 is the initial marking

� The state x of a marked Petri net

x � � x � p1 � � x � p2 � ��� � � � x � pn � �
Number of tokens need not be bounded (cfr. State Automata states).
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State Space of Marked Petri net
� All n-dimensional vectors of nonnegative integer markings

X � � n

� Transition t j� T is enabled if

x � pi � � w � pi � t j � �� pi� I � t j �
Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Petri Nets 21/69



Example with marking, enabled
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Petri Net Dynamics

State Transition Function f of marked Petri net � P� T � A � w � x0 �

f : � n � T � � n

is defined for transition t j� T if and only if

x � pi � � w � pi � t j � �� pi� I � t j �

If f � x � t j � is defined, set x� � f � x � t j � where

x� � pi � � x � pi �� w � pi � t j � � w � t j � pi �

� State transition function f based on structure of Petri net

� Number of tokens need not be conserved (but can)
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Example “firing”
� Use PNS tool http://www.ee.uwa.edu.au/ braunl/pns/

� Select Sequential Manual execution

� Transition: � 2 � 2 � 0 � � � 0 � 1 � 2 �
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Example
� order of firing not determined (due to untimed model)

� selfloop

� “dead” net
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Conflict, choice, decision
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Semantics
� sequential vs. parallel

� Handle nondeterminism:

1. User choice

2. Priorities

3. Probabilities (Monte Carlo)

4. Reachability Graph (enumerate all choices)
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Application: Critical Section
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Reachability Graph

[1,0,1,0,1]

[0,1,0,0,1] [1,0,0,1,0]

t1 t2

t1e t2e
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Algebraic Description of Dynamics
� Firing vector u: transition j firing

u � � 0 � 0 ��� � � � 1 � 0 �� � � � 0 �

� Incidence matrix A :

a ji � w � t j � pi �� w � pi � t j �

� State Equation

x� � x � uA
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Infinite Capacity Petri net
� Add Capacity Constraint: K : P � �

� New transition rule
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Can transform to infinite capacity net

1. Add complimentary place p� with initial marking x0 � p� � � K � p �

2. Between each transition t and complimentary places p�

� add arcs � t � p� � or � p� � t � where

� w � t � p� � � w � p � t �

� w � p� � t � � w � t � p �
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Capacity Constrained Petri net
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Equivalence proof: use Reachability Graph
[1 , 0]

[2 , 0]

[0 , 0] [0 , 1]

[1 , 1]

[2 , 1]

t1

t3t2

t1

t2
t4

t4
t1

t1

[p1K2 , p2K1]
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Petri net as State Machine
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Representing a Petri net as a State Machine

Construct Reachability Graph

� Reachability Graph is State Machine

� States are tuples � p1 � p2 �� � � � pn �

� Events correspond to ti firing

� May be infinite
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Representing a State Machine as a Petri net

1. no output

2. with output

� automatic (though inefficient) transformation
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FSA without output
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FSA with output
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Petri net models for Queueing Systems

Physical View

Queue Cashier

Departure

Arrival

Departure

Queue

Abstract View

Cashier
[ST distribution][IAT distribution]

Arrival

Capacity Constraints for Resource Conservation
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Simple Server/Queue Model
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Model departure explicitly
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Model Server Breakdown
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Modular Composition: Communication Protocol

Build incrementally:

1. Single transmitter: FSA vs. Petri net

2. Two transmitters competing for channel

Pros/Cons of Petri net models (depends on goals !):

� Petri net is more complex than FSA for single transmitter

� More insight

� Incremental modelling

� Modular modelling

� Intuitive modelling of concurrency
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Single Transmitter FSA

I M T

Idle Message present Transmitting

ack received

arr

arr arr

transmit

timeout
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Single Transmitter Petri net
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Concurrent, Non-interacting Transmitters
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Concurrent, Interacting Transmitters
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Analysis of Petri nets

Analysis of logical or qualitative behaviour.

Resource sharing � fair usage of resources:

� Boundedness

� Conservation

� Liveness and Deadlock

� State Reachability

� State Coverability

� Persistence

� Language Recognition
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Boundedness
� Example: upper bound on number of customers in queue.

� Definition: A place pi� P in a Petri net with initial state x0 is

k� bounded or k� safe if

x � pi �� k for all states in all possible sample paths.

� A 1� bounded place is called safe.

� If a place is k� bounded for some k, the place is bounded.

� If all places are bounded, the Petri net is bounded.
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Bounded vs. Unbounded
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Conservation

Token represents resource, process, . . .

Sum Busy � Idle tokens must be constant for all states in all sample paths
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Conservation, weighted sum

2 Transm � Idle � trsChannel � constant
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Conservation

A Petri net with initial state x0 is

conservative with respect to γ � � γ1 � γ2 �� � � � γn � if

Σn
i� 1γix � pi � � constant

for all states in all possible sample paths.
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Liveness and Deadlock
� Cyclic dependency � wait indefinitely

� Deadlock

� Deadlock avoidance: avoid certain states in sample paths
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Deadlock in Queueing system with Rework

� QueueFree � Queue1 � Rework � � � 0 � 1 � 1 �
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Deadlock resolved
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Liveness

Given initial state x0, a transition in a Petri net is:

� L0-live (dead): if the transition can never fire.

� L1-live: if there is some firing sequence from x0 such that the

transition can fire at least once.

� L2-live: if the transition can fire at least k times for some given positive

integer k.

� L3-live: if there exists some infinite firing sequence in which the

transition appears infinitely often.

� L4-live: if the transition is L1-live for every possible state reached from

x0.
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Liveness example
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State Reachability
� A state x in a Petri net is reachable from a state x0 if there exists a

sequence of transitions starting at x0 such that the state eventually

becomes x.

� Build/use reachability graph.

� Deadlock avoidance is a special case of reachability.
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State Coverability
� In a Petri net with initial state x0, a state y is coverable if there exists a

sequence of transitions starting at x0 such that the state eventually

becomes x and x � pi � � y � pi � .

� Related to L1-liveness: minimum number of tokens required to enable

a transition.
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Persistence
� More than one transition enabled by the same set of conditions

(choice, undeterminism).

� If one fires, does the other remain enabled ?

� A Petri net is persistent if, for any two enabled transitions, the firing of

one cannot disable the other.

� Non-interruptedness (of multiple processes).
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Language Recognition

Language defined by Petri net

�

set of transition sequences which can fire
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Coverability Notation
� Root node

� Terminal node

� Duplicate node
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Coverability Notation
� Node dominance

x � � x � p1 � � x � p2 � ��� � � � x � pn � �

y � � y � p1 � � y � p2 � ��� � � � y � pn � �

x � d y (x dominates y)if

1. x � pi � � y � pi � �� i� 	 1 ��� � � � n 


2. x � pi � � y � pi � for at least some i� 	 1 ��� � � � n 


� The symbol ω represents infinity

x � d y

For all i such that x � pi � � y � pi � , replace x � pi � by ω

ω � k � ω � ω� k
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Coverability Tree Construction

1. Initialize x � x0 (initial state)

2. Fore each new node x,

evaluate the transition function f � x � ti � for all t j� T :

(a) if f � x � t j � is undefined for all t j� T , then x is a terminal node.

(b) if f � x � t j � is defined for some t j� T ,

create a new node x� � f � x � t j � .
i. if x � pi � � ω for some pi, set x� � pi � � ω.

ii. If there exists a node y in the path from root node x0 (included)

to x such that x� � d y, set x� � pi � � ω for all pi such that

x� � pi � � y � pi �

iii. Otherwise, set x� � f � x � t j � .
3. Stop if all new nodes are either terminal or duplicate
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Coverability Tree Example: Cashier/Queue
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Coverability Tree Example: Cashier/Queue
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Applications of the Coverability Tree
� Boundedness: ω does not appear in coverability tree

� Bounded Petri net � reachability graph

� Conservation: γi � 0 for ω positions

� Inverse problem: what are γ and C ?

� Coverability: inspect coverability tree

� Limitations: deadlock detection
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