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Abstract

We present an approach for deriving a correspondence between the SIR epi-
demiological model to an equivalent agent-based model. We show a detailed
correspondence analysis leading to an accurate fit between the two models.
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1. Introduction

Computational modelling of various properties of infectious disease out-
breaks are an important tool in development of effective public health mea-
sures. For example, one can predict with accurate models the effectiveness
of a public health measure in mitigating the spread of a disease. This is
especially important since the high costs for implementating such measures
often limits the amount of experimentation done in real world settings. Fur-
thermore, ethical concerns limit the kinds of acceptable experimentation.
Through simulation, we can make observations about the effectiveness of high
risk and high cost measures, infect model populations with potent viruses and
assist engineers and city planners to the design of metropolitan areas.

Despite their benefits, accurate infectous disease models are difficult to
develop due to large number of parameters that needs to be accounted for.
Distributions of age, sex and education, the topology of transportation net-
works and social structures, and the implementation of vacination campaigns,
quarantines or other public health measures are only a few examples of pa-
rameters that has an influence on the spread of disease. To complicate things
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further, many parameters have complex interrelationships which are difficult
to quantify precisely.

To tackle this complexity, researchers reaches out in general to two for-
malisms: system dynamics and agent-based modelling. System dynamics
describes the behaviour of a system over time using level and rate equations
(accumulations and flows) structured into feedback loops (Forrester, 1994).
The basis of this approach is the acknowledgment that the structure of sys-
tem is as important as its individual components for explaining the behaviour
of the system as a whole. Agent-based modeling is similar with that respect.
However the two methodologies differ in the level at which they focus their
attention and how they model the relationships among the components (Van
Dyke Parunak et al., 1998). In agent-based models, we have a collection
of automonous agents operating in bounded regions of a simulated world.
Agents can display complex individual behaviour that changes over time,
such as learning and adaption (Bonabeau, 2002). Furthermore, these agents
can interact with one and another to create complex emergent behaviour.
On the other hand, systems dynamics models typically assume homogeneous
mixing and markovian behaviour for the individuals. Also, systems dynam-
ics focus on aggregates rather individuals. Therefore, we can say a system
modeled using an agent-based approaches captures a phenomena from the
bottom-up where as system dynamics captures it from the top-down.

Finding a correspondence between two models is in general a diffcult
task. Even for the simple case we present, we will have to settle for an
approximation because of the Kermack-McKendrick model is not expressive
enough to capture all the details of the agent-based. Despite this fundamen-
tal limitation, we will show that a good correspondence is possible. This is an
interesting development because it shows that the complexity of an emergent
phenomenon generated by an agent-based model can be captured by a simple
system dynamics model. And this result could lead to more efficient simula-
tion of such phenomenon by replacing computationally extensive agent-based
models with computationally system dynamics models where applicable.

2. Kermack-McKendrick disease model

In epidemiology, an SIR model computes the theoretical number of in-
fected people by a disease in a population over time t. It is characterized
by the fact that it separates the population into three distinct subgroups
(or compartments): the number of susceptibles people S(t) that could be in-
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fected with the disease, the number of infected people I(t), and the number
of people R(t) that recovered from the disease. The first SIR models were
proposed by Kermack and McKendrick (1927), but they gained prominence
only decades later when they were brought back by Anderson et al. (1979).
SIR models were shown to be good and simple models for understanding the
dynamics of population under the influence of an infectious disease.

The Kermack-McKendrick model is perhaps the simplest example of SIR
model. This model makes several simplifying assumptions about the popu-
lation and the infectious disease:

• Fixed population. There is no births, deaths associated with the disease,
or deaths of natural causes.

• Homogeneous population. Characteristics of the individuals, like age,
sex, education and so forth, have no influence on the disease.

• Instant incubation period. The time period between an individual gets
infected and becomes infectious is zero.

• Disease imply infectivity. The length of the infectious period is the
same as the duration of the disease.

• Permanent immunity. Recovery from the disease confers permanent
immunity to the individual.

• Uniform diffusion. The probability of an individual of being in contact
with an infectious agent is the same as for every other individual.

While the assumptions of the Kermack-McKendrick model limit its applica-
bility, it is a good choice for us because its simplicity.

In a fixed population N = S(t) + I(t) +R(t), a possible system dynamics
formulation of the Kermack-McKendrick model consists of three nonlinear
coupled ordinary differential equations

dS

dt
= −βIS

dI

dt
= βIS − νI

dR

dt
= νI
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This formulation implies the rate at which individuals acquire the infec-
tion is proportional to the number of contact between susceptible and ratio
of infected individuals to the total population, where β is the transmission
rate parameter. It also implies the rate at which individuals recover from
the disease is proportional to number of infected, that is νI where ν is the
recovery rate parameter.

Note, this model dictates the transition rate to the infected compartment,
(as known as the force of infection) to be βI. This results in a force of
infection that depends on the absolute number of agents in the population. So
for a fixed β, the rate of infection will increase as we increase the population
density N .

3. Agent-based disease model

To derive an agent-based model equivalent to Kermack-McKendrick model,
we have to use all the same assumptions as previously and make some addi-
tional ones. One common characteristic of agent-based models is the notion
of a domain, or world, in which the agents exists and interact in. To make the
representation nice to work with, we choose the world W to be a continuous
2D space of unit area, or formally W ⊆ R2 such that

∫
x∈W dx = 1. We also

equip this world with an Euclidean distance metric d(x, y) with the property
that the area of influence R = {y : d(x, y) < r, y ∈ W} defined around a
given point x ∈ W and radius r satisfies

∫
x∈R dx = πr2. This is our way of

saying the world has no boundaries, or edges.
Then, we can define the behaviour of an individual agent as follow:
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1 if Statet = Susceptible
2 for all agent in World
3 if agent.Statet = Infected and d(Positiont, agent.Positiont) < r
4 Statet+1 ← Infected
5 else
6 Statet+1 ← Susceptible
7 elseif Statet = Infected
8 if Random(0, 1) < γ
9 Statet+1 ← Recovered

10 else
11 Statet+1 ← Infected
12 elseif Statet = Recovered
13 Statet+1 ← Recovered
14 Positiont+1 ← Random-Point(World)

Just to be clear, in the above rules, the procedure Random-Point(World)
returns a random point from a continuous uniform distribution over W and
similarly Random(0,1) returns a random value from a continuous uniform
distribution over the closed interval [0, 1]. Also the radius of infection r and
the probability of recovery γ are the parameters of our agents.

It is easy to check that the above rules respect all the assumptions we
gave for the Kermack-McKendrick model. Uniform diffusion is the only non-
obvious property. We achieve it using the random position update on line
14, which makes the agents “teleport” themselves around the world. Clearly
this is not representative of how an individual would actually move in an
environment, but we need this if we hope to find a correspondence with our
systems dynamics model.

Another thing we may observe is we no longer have continuous time. The
state and the position of an agent evolve in discrete time steps. Moreover,
this model is not deterministic anymore. We now have a stochastic process.
These are things we will need be aware during our correspondence analysis.

4. Correspondence analysis

Here, the goal of our correspondence analysis will be to find the system
of equations between the parameters β and ν of the system dynamics model
and the parameters r and γ of the agent-based model that will result in
equivalent evolutions over time of S(t), I(t) and R(t) under both models.
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First, we find the trivial correspondence ν = γ for the recovery rates of
the two models. Since the random values X returned by Random(0, 1) have
uniform distribution X ∼ Uniform(0, 1), it follows that the probability of
recovery for an infectious subject is Pr(X < γ) = γ.

Next, we want to derive the probability of an individual of being in contact
with an infectious agent. So assuming an agent has a probability α of being
in the infectious area α ≤ 1 of an infected agent in a world of unit area, then,
the probability of of not being infected by k independent infectious agents
is (1 − α)k. This leads to the probability of being infected by one of them,
being 1− (1− α)k.

This means the force of infection in the agent-based model is an exponen-
tial function in number of infected individuals I. However, in the Kermack-
McKendrick model, we assumed it to be proportional to I. For this reason,
we will need to get rid of the exponential and use an approximation to solve
this model mismatch.

By equating forces of infection of the two models, we get

βI = 1− (1− α)I (1)

Then, we can estimate β using a first order Taylor’s expansion around I = n,
being

β =
1− (1− α)I

I
(2)

=
1

n
− 1

n
exp (n ln(1− α)) +O(n− I) (around I = n) (3)

= − ln(1− α) +O(I) (around I = 0) (4)

So which expansion should we choose? If the rate of recovery is zero (or suf-
ficiently close), then we should take the expansion around I = N/2 because
the effect of the infection rate β will be the greatest around that point. In
other words, when ν = 0 in the systems dynamics model, the equation

dI

dt
= βIS = βI(N − I) (5)

is maximized when I = N/2. Hence, it would make sense to have a more
accurate approximation around that region to mitigate the effects of the error
term. We can get the correspondence for this case by substituting α for the
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area of infection πr2

β ≈ 2

N
− 2

N
exp

(
N

2
ln(1− πr2)

)
(6)

Unfortunately, finding the optimal point to expand around is a difficult prob-
lem in general due to the non-linearity of the model. A simple heuristic is to
look at the basic reproduction ratio R0 = Nβ/ν. When R0 is small, let say
R0 < 3, the infection will die out quickly and we can approximate β with the
expansion around I = 0 to get reasonable results.

A better heuristic however is to expand at the maximum of I. So if we
solve dI/dt = 0, then we find the maximum occurs when S = ν/β. And by
integrating dI/dS, we get

I = S0 + I0 −
ν

β
lnS0 +

ν

β
lnS − S (7)

where S0 and I0 are the initial numbers of susceptible and infected individ-
uals. Plugging in S = ν/β gives

I = S0 + I0 +
ν

β

(
lnS0 − ln

ν

β
+ 1

)
= η(β) (8)

Since the maximum depends on β, we need to use an iterative scheme to get
our approximation. Assuming r > 0 and ν > 0, then we can combine (3),
(4) and (8) to the estimate for β

βi =
1

η(βi−1)

(
1− exp

(
η(βi−1) ln(1− πr2)

))
(9)

β0 = − ln(1− πr2) (10)

When ν = 0, we will use our previous approximation (6). And if r = 0, then
β = 0. This scheme will converge linearly toward a desired estimate of β
as i → ∞. In practice, it only takes a few iterations to achieve convergence
within a machine epsilon.

5. Results

To assess the quality of our correspondence, we implemented simulators
in Python for the two models presented and ran simulation for multiple
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combinations of parameters. We found the correspondence to be especially
good when the infection is strong. We also found the iterative scheme to
give consistently good results. We present sample results in Figure 5 and 3.
But unfortunately, due to the runtime of the simulations, we are unable to
provide statistical analysis of our results.

6. Conclusion

Even for a simple model, like the Kermack-McKendrick model, we shown
that achieving good correspondences between models constructed with differ-
ent formalisms is difficult but possible. The approach we presented is flexible
enough to be applied to other kinds of infectious disease models.

Our analysis could be improved however by looking more in depth at the
differences of specification between agent-based and system dynamics models,
such as the effects of discrete versus continuous time and stochastic versus
deterministic representations. For the model we presented, our analysis was
sufficient but other models these difference could have a great impact on how
we derive correspondences.

Finally, it would be instructive to attempt to derive correspondences to
agent-based models with other characteristics than the one we presented to
understand better the limitations of the Kermack-McKendrick model, and
other SIR models. For example, we could use discrete space representations,
such as grids and graphs, instead of a continuous area. Or, we could attempt
to deliberately break some of the assumptions of the Kermack-McKendrick
to analyze its robustness. This further research could result in better under-
standing about the applicability of such models.
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(a) Result of a simulation of the agent-based model with radius
of infection r = 0.005, and rate of recovery γ = 0.005
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(b) Result of a corresponding simulation of the system dynamic
model, rate of infection β = 7.62562× 10−5 and rate of recovery
ν = 0.005

Figure 1: Simulation results for the evolution of a population of size N = 1 000 over 1 000
days under the influence of an infectious disease. The parameter β was estimated using
(10).
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Figure 2: Comparison of the simulation results from Figure 1. RMS of the susceptible,
infected and recovered differences between the two simulations are 4.71, 10.62 and 8.63
respectively
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(a) Result with the parameter β = 1.5205× 10−5 for the system dynamics model obtained
using the approximation around I = 0. RMS of the susceptible, infected and recovered
differences between the two simulations are 838.7, 116.3 and 813.2 respectively.

Figure 3: Comparison of the approximations around I = 0, I = N/2 and I = η of β in a
simulation of a population of size to N = 30 000 and I0 = 100 over 1 00 days under the
influence of a weak infection. The parameter of the agent-based model are r = 0.0022 and
γ = 0.3.
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(b) Result with the parameter β = 1.3596× 10−5 for the system dynamics model obtained
using the approximation (6) around I = N/2. RMS of the susceptible, infected and recovered
differences between the two simulations are 3219.2, 317.7 and 3174.0 respectively.

Figure 3: (continued) See page 12 for the description.
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(c) Result with the parameter β = 1.4982× 10−5 for the system dynamics model obtained
using the approximation (10) around I = η. RMS of the susceptible, infected and recovered
differences between the two simulations are 381.9, 63.9 and 370.0 respectively.

Figure 3: (continued) See page 12 for the description.
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