
Understanding and Evaluating Behaviour Trees

Jonathan Tremblay
Jonathan.Tremblay2@mail.mcgill.ca

Abstract

Behaviour trees is a formalism mostly used by the game industry to model
the behaviour of non-player characters. Since it is used by independent com-
munities, it lacks consistency in the definition of the model and almost no
metrics are provided.

This report addresses these issues by presenting a well defined formal-
ism for the behaviour trees and environment and non-environment oriented
metrics. Moreover, the metrics were tested inside a game simulation.

Keywords: Artificial Intelligent (AI), Decision Making and Behaviour
Trees

1. Introduction

Behaviour Trees (BT) is a formalism used by game and robot develop-
ers, and modeller to model different Artificial Intelligent (AI) comportment.
Although, it is mainly used by game developers for its ease to use and under-
stand by non-programmers. BT have a lot of in common with Hierarchical
State Machines but, instead of state, the main building block of a behaviour
tree is a task [5]. A task can be something as simple as looking up a variable
or executing a particular action. The organisation of tasks into a sub-tree
will results into a complex action such as opening a door or set explosives.
Moreover composing a tree of sub-trees will result into a complex behaviour
such as choosing to chase a deer in order to eat its meat. Even though BT are
mainly used by the game industry, the formalism comes from the Robotics
world [2].

Since the formalism is mostly used in the game industry [3], it lacks of
good documentation and consistency. For example, the meaning of task
differs from authors [1, 4]. Moreover, it lacks tools to evaluate the profile
of BT [6]. This report tends to address these issues by presenting BT as

COMP 522: Modelling and Simulating April 28, 2012



a defined formalism and by giving metrics that are environment related to
profile BT. In order to test the metrics a simple game was implemented and
tested.

This report is organized as follow, the second section introduces BT as
a defined formalism. The third section presents our implementation. The
fourth section talks about our experiment and the metrics used. In the last
section, there is a conclusion and an opening on further works.

2. Behaviour Trees

For the last 10 years, the formalism used by game developers to build
different AI comportment is BT. This success comes from the simplicity to
understand, use and develop BT by non programmers [5]. A BT is formed
by internal and external nodes. An external node or task, could represent
anything from walking to a specific point, see any enemies, shoot, etc. Tasks
are composed into sub-tree to represents more complex actions. Again these
actions can be reorganized into higher level behaviour. This low-level to
high-level composition is powerful, when building higher level behaviour, it
removes the awareness of implementing low-level task as they are indepen-
dent.

It is important to note that BT lives inside discrete time. Moreover, in
the case of game, this time based is so fast that for any outsider observer
this seems to be continuous, for example 60 frames per second.

Also, it is important to note that there is a notion of a blackboard (state)
influenced by BT. For the following, we are going to assume that this black-
board is invisible.

2.1. Types of Task

Every tasks have some basic structure in common, they all have some
function to run and they return the status of their success or failure, boolean
structure could be used.

task =< f, out > (1)

In equation 1, f references to the task function and out is a boolean
variable based on the success or failure of f . A behaviour tree consist of
different kind of tasks, inside this report we will consider: Condition, Actions
and Composite.

2



Condition. A condition task test some property of the environment. For
example, do I see an enemy, do I have more than 50 health, can I walk there,
etc. As a rule of the thumb, the condition should test one property so it can
be reused. The node has to return the status (true or false) of the property
checked.

Action. An action alter the state of the environment. There can be actions
for animation, movement, changing the internal state, shooting, etc. Most
of the time, an action task will return success, if there is a chance not, it is
important to check with a condition before executing the action.

J K = out(f) =

{
True
False

(2)

Both condition and action tasks sit on the leaf node of BT. They are
denoted with the name of the task inside a circle. In equation 2, the meaning
of a task is denoted as True or False based on the output of f .

Composite. Most of the branches of BT are composite tasks and their be-
haviour is based on their tasks children.

Composite Task =< f(c), c, out > (3)

In equation 3, c refers to the children of that task, it is define by the
modeller and respects a certain organisation, such as first in first out. The
boolean variable out is based on the success and failure of f(c) and f(c)
takes into consideration the children tasks. For this project, we consider the
following special composite tasks: Selector, Sequencer and Decorator.

Selector. A selector task will return immediately with a success (true) sta-
tus code when one of its children runs successfully. It is denoted with an
interrogation point inside a circle.

J K = out(f(c)) =

{
False if i = False ∀i ∈ c
True otherwise

(4)

The meaning of a selector task is expressed by equation 4, if one of the
children is true, it will return true. On the other hand, if none of its children
is true, it will return false.

3



Sequencer. A sequencer task will return immediately with a failure (false) is
one of its children fails. It is denoted with an arrow inside a circle.

J K = out(f(c)) =

{
True if i = True ∀i ∈ c
False otherwise

(5)

The meaning of a sequencer task is expressed by equation 5, if one of the
children is false, it will return false. On the other hand, if none of its children
is true, it will return true.

In the cases of both the sequencer and selector task, the evaluation of the
children is deterministic, such as the order is respected. It is also possible to
use non-deterministic composition task. The random sequencer and selector
are examples of this.

Random Selector. The random selector acts exactly as the equation 4 de-
scribes it, although every time the node is evaluated, it rearranges randomly
the order of c. It is denoted with a tilt followed by a interrogation point: .

Random Sequencer. The random selector acts exactly as the equation 5 de-
scribes it, although every time the node is evaluated, it rearranges randomly
the order of c. It is denoted with tilted arrow: .

Decorator. The name decorator refers to the design pattern “decorator” that
wraps an another class modifying its behaviour. The decorator task has the
same interface as any composite task. In the context of BT, a decorator has
only one child and modifies it in some matters.

Decorator Task =< f(e), e, out > (6)

The definition of a decorator is presented in equation 6. It is important
to note that e here refers to one child, that is why it is denoted differently
than in equation 3, out is a boolean variable based on the success and failure
of f(e) and f(e) will take into consideration the child node. For this project
we will only consider one decorator task: Inverter task.

Inverter. The inverter simply return the inverse of its child. It is denoted
with a interrogation point inside a circle.

J K = out(f(e)) =

{
True if e = False
False otherwise

(7)

4



The meaning of a sequencer task is expressed by equation 7, if the child
returns true, the inverter task returns false, otherwise it is true.

Behaviour Trees. In general BT are form of task nodes where the leafs are ac-
tion or condition tasks and the branches are composite tasks such as selector
task. In this case we define a behaviour tree as follow:

Behaviour Trees =< e > (8)

In equation 8, e represents one task node. The task node is evaluated
at every update of the simulation. In general, the output of the tree has no
influence on the simulation. Although, someone could use the output of the
tree to influence the simulation. Moreover, with this structure it is possible
to build complex behaviour.

Example

In order to fully grasp the power of BT, we are going to explore a small
example step by step. The example represents the behaviour of a guard in a
video games. We are interested in the case where the guard sees an enemy.
In this case, she will engage combat using a randomly choose combat tactic
if her health level is high enough. In the case where her health level is not
high enough, she will try to flee. If she cannot feel, she will fight.

In Figure 1 we can see the behaviour presented translated into a BT. The
evaluation starts at the sequencer at the top (1). In sequencer and selector
task, the children are evaluated from left to right, or first in first out. The
first child to be evaluated is (2). If the guard can see an enemy it returns
true, if there is no enemy, it returns false which cause the sequencer at (1)
to return false as well. In the case where there is an enemy, node (3) is
evaluated. If the health level of the guard is low (4), then it will try to run
away from combat (6). In the case where the guard does not have enough
health (4) and can flee (6), the sequencer (4) will return true to (3), which
will cause (3) to return false to (1). In this case, the guard does not attack
the enemy and flee. Moreover when the health level is high enough, (4) will
return false to (5) which will return false to (3) which will return true to
(1), which cause the guard to attack the enemy. When (7) is evaluated, it
randomly changes the order of (8), (9) and (10). Once the order is changed,
all the actions are picked until one returns true. In the case where none
returns true, it returns false.

5



Figure 1: Behaviour trees example

As you can see the BT translates well the behaviour presented before.
BT are powerful and easy to use, since the understanding is pretty straight
forwards, it is possible to give a set of actions and conditions to designer (non-
programmer) in order to build interesting behaviours for games. Moreover,
games are not the only place where BT are useful, they are also used in
robotics or simulating AI.

Implementation

Behaviour trees is used bye different fields such as robotics, AI for video
games, human behaviour simulation, etc. In our case, we are particularly
interested in building AI for games. Therefore, BT were implemented inside
Unity 3.5.1. Unity is a free integrated authoring tool for creating 3D video
games. The development tool runs on both Windows and Mac OS. The
compiled Unity game runs on Windows, Mac OS, Xbox 360, Playstation 3,
Wii, iPad, iPhone and Android. Also, Unity uses C# and JavaScript as
programming language.

For this project a simple game was develop in Unity using C#. Figure 2
is a screen shot of the game/simulation running. The game is quite simple,
the red cylinder, AI, has to reach the blue cube while avoiding/shooting at

6



Figure 2: A screen shot of the game

the green cylinders. The green cylinders, enemy, are not friendly towards the
AI. If the AI gets too close to or shoot one enemy, the enemy will chase the
AI. When the enemy touches the AI, the AI looses some health. As defence,
the AI can shoot at them, three bullets are needed to take an enemy down.

Figure 3: The enemy behaviour trees

The AI and enemies behaviour are implemented inside BT. They used
the internal and external nodes presented in the previous section. The AI’s
behaviour trees will be discuss in the following section.

Figure 3 is the enemy behaviour tree. When the enemy sees someone, it
will start chasing it by moving towards it in a straight line. When it collides
with that person it stops moving and “eat”. When an enemy receives a shot
from the AI, it adds the AI to its list of things it could see. This causes the
enemy to chase the AI as it can see it.

7



Experiment

For this project two different BT were designed, the first one simulates
a killer, she does not try to dodge anything. She goes for the goal, and if
something is in the way, she shoots at it. The second AI is more subtle, she
will try to avoid any hazard and try to reach the goal using sophisticated
dodging.

(a) Killer (b) Dodger

Figure 4: Behaviour Trees

Killer. As expressed, the killer goes directly at the goal and shoot. In Figure
4a we can see the actual BT used to represent that behaviour. When the
killer sees an enemy, she will shoot at it. Otherwise she is moving towards
her goal. The killer is always shooting at the closest enemy.

Dodger. The second developed AI is the dodger, she will try to avoid combat
as much as possible. In Figure 4b is the BT, as you can see, she will move
around the enemy in order to find a safe route to the goal. If it is impossible
to move away from the enemy, she will start shooting at the enemy. If no
one is encounter, she is moving towards the goal.

Metrics

In order to measure the output of both the AI, an observer was imple-
mented to gather information about the simulation. In this case we are

8



interested in defining performance metrics that will give a profile to the AI,
we used five metrics.

1. Time: how long did it take for the AI to reach the item

2. Bullet used: how many bullets were used in order to reach the item

3. Average health: average health level for the simulation

4. Enemies killed: how many enemies were killed

5. Tree information: a percentage of usability given to every node in the
tree

The tree information gives a percentage rate for every note, this per-
centage represents the rate the node was visited. Those metrics are used to
evaluate the performance and profile the AI.

Results

The simulation was run inside the game structure presented in Figure
2. In total, 16 enemies are there to take down. Both AIs were tested over
multiple simulations. In Table 1 we can see that both BTs are really different

Table 1: Simulation result

Killer Dodger
Time 152 19.57
Bullet used 50 0
Average Health 67.3 100
Enemies Killed 16 0

in term of outcomes. First, the time spent on the level is drastically different,
the killer for sure will take longer as she has to move through the hoard of
enemy that you can see in Figure 2 in order to reach the item. Shooting
enemies takes a little while, on the other hand the dodger does not shoot
anyone, she goes around. As you can see the dodger did not have to kill
anyone, as she was not set into a trap or blocked against a wall. Because the
world does not have any walls, the dodger does not have to kill anyone.

In Figure 5, you can see the tree information from the simulations. In
Figure 5a, you can see that 90% of the updates is spent shooting and only
10% to move towards the item. On the other hand, in Figure 5b, 41% of
the time is spent trying to avoid the enemies and 59% of the time moving
towards the item. It is interesting to see that the dodger does not use Stop

9



(a) Killer (b) Dodger

Figure 5: Tree information

and Shoot, as expressed before it cause by the world not having any walls.
She goes around them without getting stock. In this case, this node is useless,
this metric allows us to be critic towards our design. Since it is never used,
maybe it is best not to have it. This metric in particular locates useless tasks
and give an input about was to do with it.

Moreover, these metrics allow us to build a profile for any design. As we
can see the killer is slow and will make sure her path is clear before moving
forwards. On the other hand, the dodger is fast but does not kill anyone.
These profiles are interesting in order to design gameplay in games. Imagine
the player has to send three units to recover the item, she decided when to
send them, maybe she will try to send a killer, a dodger and a killer again,
or any arrangement. Without those metrics, you can guess how the BT will
interact with the simulation, but it will not be possible for you to make any
real conclusions about their behaviours.

3. Conclusions

In this report a description of Behaviour Trees were presented. The for-
malism is really useful to model complex behaviour using only task such ac-
tions and conditions. The formalism was implemented inside a simple game
simulation, which allowed us to develop environment oriented metrics in or-
der to capture the essence of the AI. Moreover, there exists more tasks node,
such as parallel selector which introduces the idea of parallel task execution.

10



This task shows how specialize BT can become and how creating a task is
strongly adaptive towards the goal to accomplish. It would be interesting to
develop more about this adaptivity and how the creation of a new task could
influence the comportment of BT.

References

[1] Alex J. Champandard. Getting Started with Decision Making and Con-
trol Systems. AI Game Programming Wisdom 4, 2008.

[2] B. Iske and U. Ruckert. A methodology for behaviour design of au-
tonomous systems. In Intelligent Robots and Systems, 2001. Proceedings.
2001 IEEE/RSJ International Conference on, 2001.

[3] Damian Isla. GDC 2005 Proceeding: Handling Complexity in the
Halo 2 AI. http://www.gamasutra.com/view/feature/2250/gdc_

2005_proceeding_handling_.php, 2005. [Online; accessed 28-April-
2012].

[4] Chong-U Lim. An AI Player for DEFCON: an Evolutionary Approach
Using Behaviour Trees. Imperial College London, 2009.

[5] Ian Millington and John Funge. Artificial Intelligence for Games, Second
Edition. 2009.

[6] Ugo Di Profio Yukiko Hoshino, Tsuyoshi Takagi and Masahiro Fujita.
Behavior Description and Control Using Behavior Module for Personal
Robot. ICRA, 2004.

11


