
Simulation of Place Transition Petri Nets in AtomPM

Maris Jukss

Abstract

AtomPM, next generation of model transformation tools, sibling of Atom3
provides a convenient and distributed way for model transformations and
domain specific language engineering. One of the formalisms included with
AtomPM is Petri Net modeling language for simple place transition nets.
AtomPM does not provide the operational semantics for Petri Nets as a
built-in feature. In the context of this project, model transformation scheme
was developed to execute Petri Nets that were constructed inside AtomPM.
In addition, reachability graph generation was introduced along with the
feature to export Petri Net to PNML.

Keywords: Petri Nets, Operational Semantics, Reachability Graph,
PNML, Execution

1. Introduction

AtomPM is evolving and is now capable of replacing some of the exist-
ing specialized modeling tools, like PIPE Bonet et al. (2007) for Petri Net
manipulation and execution. However there was no built in functionality to
provide operational semantics of Petri Net (PN) Petri (1973) or to perform
the basic analysis such as reachability graph generation.

This project’s main goal was to execute PNs created from built-in PN
formalism. This was achieved by combination of model transformation rules
and the action code for model manipulation. As a result several rules were
developed that were combined into a single transformation file. To make
things easier and more convenient, PN specific tool bar was developed that
allows to compile PN and prepare PN for execution and analysis, reachability
graph generation, and PNML Billington et al. (2003) export. Reachability

Email address: maris.jukss@mail.mcgill.ca ()

Preprint submitted to COMP 522 April 27, 2012



Figure 1: Rule scheduling for PN execution

Figure 2: Petri Net specific bar

graph generation is an important analysis tool presented in PIPE tool and is
a valuable feature to have in any serious PN tool. The reachability graph is
generated and then plotted using graphviz. We describe the related work in
Section 2, and provide implementation details in Section 3. The result are
demonstrated and analyzed in Section 4, and finally, we conclude this report
in Section 5.

2. Related Work

PIPE tool, the flexible, yet lately unsupported and buggy tool provides
many PN functionalities. I have envisioned this project to implement the
features available inside that tool, however due to current limitations of
AtomPM, it was impossible to conduct this task. For example, one can
not affect the colors of fired transitions in this tool. The reachability graph
is generated similar to PIPE tool. PN models that are presented were taken
from Christensen and Petrucci (2000).

2



3. Implementation

• To implement PN execution, several rules were implemented and com-
bined in one transformation. The scheduling of the rules in transfor-
mation is displayed in figure 1. Following the rules top to bottom,
the first rule initializes the data structure that would hold all enabled
transitions. The second rule would scan all transitions presented in PN
model to determine if any transition is enabled. A transition is enabled
if all incoming places provide enough tokens. Once the enabled tran-
sitions have been identified, the next rule would randomly choose the
transition to fire. In fact, the next rule would perform the change in PN
model concrete syntax and visualize the result of the token exchange
during the transition firing. Due to the current limitations of AtomPM
tool, the rules rely heavily on the action language of rules to achieve
the execution of PN. The green lines in figure 1 display the control flow
of rule execution. The path is taken after successful execution of a rule.

• In figure 2, the PN specific tool bar that was developed for this project
is demonstrated. The first button serves two purposes. It can load
the PN execution rule, thus eliminating the need to open the trans-
formation to execute PN. It also prepares the server for the creation
of the reachability graph. The second button implements creation of
reachability graph. The output svg image of the reachability graph is
stored in graph folder of AtomPM installation. The third button is
not implemented but was meant to provide the import capability. The
forth button saves the current model into PNML file in user’s directory.

• Reachability graph generation is an implementation of a straight for-
ward algorithm that is stack-based. Stack contains the states, that we
need to explore while constructing the reachability graph. The inci-
dence matrix is used to produce new states when transitions fire, and
D-matrix is employed to determine whether any transition is enabled.
The reachability graph generation was implemented using Python.

• Export to PNML feature was implemented using Javascript on the
server side of AtomPM. We analyze json file representing the PN model
and construct the PNML file. We then transfer all necessary attributes
of nodes to receive meaningful PNML model. The results of conversion
were verified using PNML viewer tool, PNMLview .

3



Figure 3: Petri Net used for testing reachability graph generation.

• PN execution, export to PNML, and reachability graph generation are
tightly integrated. For example, after executing PN (which can also
be paused and resumed) one can generate reachability graph based on
current marking of the PN or export it into the PNML file. This is a
very practical feature.

4. Results

Empirical analysis of PN execution is difficult to define and is not included
in this report. However, it is worth noting that execution was observed to be

4



Figure 4: Reachability graph for figure 3.

Table 1: The results of constructing reachability graph for the benchmark model in figure
3. Time without plotting the actual graph.

M0 Time,seconds Number of nodes Number of edges
a1=1,b1=1 0.023551 21 43
a1=2,b1=2 0.563132 207 725
a1=3,b1=3 18.873297 1175 5311
a1=4,b1=4 359.258912 4790 25325

5



Figure 5: Model to demonstrate export to PNML.

6



"A1"
"B1"

t1 t4

"A2"
"B2"

TF1 t2 t3

TF2

TF1
TF2

TF3

TF4

"B3""A3" "A4"

TF3
TF4

"A5"

Figure 6: Resulting PNML from pnmlview.

7



non-deterministic in fashion, as expected. We can analyze the construction
of reachability graph. Table 1 presents the performance analysis of reach-
ability graph construction. As can be seen, the construction time dramati-
cally increases due to the state space explosion phenomenon. Interestingly,
PIPE tool did not generate the reachability graph for the initial marking of
M0 =(a1 = 2, b1 = 2) of equivalent net and onwards in complexity, while,
the graphviz software was able to plot the this graph inside AtomPM. How-
ever, even on a powerful 16 GB machine, graphviz could not handle plotting
the graph for initial marking of M0 =(a1 = 4, b1 = 4). An example of a
successfully generated reachability graph is shown in figure 4.

The export feature was tested on various models and performed well,
except for the strange occurrence of misplaced transitions or places inside
pnmlview tool. I presume that this is the result of tool’s malfunction, perhaps
due to its canvas being unable to accommodate the dimensions imported
from AtomPM. Based on my observations, this incident occurs only for large
models. Since I was not able to find another tool to display PNML file, I
cannot conclude that the conversion is at fault. Figure 5 represents the PN
model used to demonstrate PNML export feature. The final PNML file is
displayed in figure 6.

5. Conclusions and Future Work

In this project, I successfully incorporated the PN tool bar with a func-
tionality that would benefit PN users of AtomPM. The complexity of this
project was the multi-layered architecture of AtomPM and the lack of full
transformation language support to perform PN execution purely through
graph rewriting. At first, I implemented the marking of enabled transitions
using the attributed generic links. However, that approach appeared to be
very slow. The action code approach is a necessity in the current implementa-
tion of AtomPM. In the future release of AtomPM, transformation language
would provide more flexibility to transformation engineers. For the future
work, one can envision the import of PNML files into AtomPM. The illu-
mination of fired transitions would be very informative and helpful, however
currently it is impossible to implement. At the moment, when transition
fires, text of the name of transition toggles to new value and back to old
value rapidly to indicate the firing.

8



References

Billington, J., Christensen, S., van Hee, K., Kindler, E., Kummer, O.,
Petrucci, L., Post, R., Stehno, C., Weber, M., Jun. 2003. The Petri Net
Markup Language: Concepts, Technology, and Tools. In: Applications and
Theory of Petri Nets 2003: 24th International Conference. Eindhoven, The
Netherlands, pp. 1023–1024.
URL http://www.springerlink.com/content/rp1dqtlmqr5q665b

Bonet, P., Llado, C., Puijaner, R., Knottenbelt, W., Oct. 2007. Pipe v2.5.:
a petri net tool for performance modelling. In: 23rd Latin American Con-
ference on Informatics.

Christensen, S., Petrucci, L., 2000. Modular analysis of petri nets. Comput.
J. 43 (3), 224–242.

Freek, W., Apr 2012. Pnmlview tool.
URL http://www.vanwal.nl/pnmlview/

Petri, C. A., 1973. Concepts of net theory. In: MFCS. Mathematical Institute
of the Slovak Academy of Sciences, pp. 137–146.

Rapahael, M., Apr 2012. Atompm tool.
URL http://msdl.cs.mcgill.ca/people/raphael/files/usersmanual.pdf

9


