Hybrid and Multi-Formalism Modelling

Rifeng Ding
rifeng.ding@mail.mcgill.ca
Overview

- Hybrid Modeling System
- Purpose of the Project
- Tool: HyVisual in Ptolemy II
- Project: A Train System
- Demo
- Conclusion
Hybrid Modelling System [1]

- Heterogeneous systems including continuous-time subsystems interaction with discrete events
- Effective to model physical systems interacting with software or undergoing discrete mode changes

Hybrid Modelling System

- Continuous Subsystem
 - Using differential equations

- Discrete Event
 - Using finite state machines
 - Transitions between states represent either discrete mode changes or actions taken by software subsystems
Purpose of this project

• Explore how to use hybrid modelling formalism to stimulate real-world system:
 • Tools: HyVisual in Ptolemy II
 • Simulated system: A Train System
• Show the advantages of hybrid modelling formalism
Tool: HyVisual in Ptolemy II

• Ptolemy Project [2]
 • UC Berkeley EECS Department
 • Study modeling, simulation, and design of concurrent, real-time, embedded systems
 • http://ptolemy.eecs.berkeley.edu/index.htm

• Ptolemy II
 • A open-source software framework supporting simulation experimentation with actor-oriented design

Tool: HyVisual in Ptolemy II

• HyVisual [3]
 • Hybrid System Visual Modeler
 • Block-diagram editor and simulator for continuous-time dynamical systems and hybrid systems
 • Supporting construction of hierarchical hybrid systems
 • Using block-diagram representation ordinary differential equations (ODEs) to define continuous dynamics
 • Using finite state machine to define discrete events
 • Allowing mix of continuous-time signals with events that are discrete in time

Tool: HyVisual in Ptolemy II

- HyVisual:
HyVisual: Directors

- Continuous Directors (Simulator)
 - Manage the continuous simulation
 - Contains a sophisticated ODE solver
HyVisual: Actors

- Actors: software components that can execute concurrently and communicate through messages sent via interconnected ports
HyVisual: Actors

- Actors used in this project:
 - Modal Model Actor
 - Source Actor:
 - const actor
 - Mathematical Actors:
 - Add/Abstract actor
 - Scale actor
 - Continuous Actors:
 - Integrator actor
 - Resettable timer actor
 - Random Actors:
 - uniform random Actor
HyVisual: State Machine

- An example: bouncing ball

The "free" state contains a refinement that describes the physics of a mass in free-fall. The self-loop transition on this state models a bounce by reversing the direction of motion.

```
init
guard: true
set: free.initialPosition = initialPosition; free.initialVelocity = 0.0
```

```
guard: bump_isPresent
set: free.initialVelocity = -elasticity * velocity; free.initialPosition = position
```
HyVisual: Hierarchical Models

- Continuous Actors
 - Continuous Model (a Modal Model Actor)
 - Input/output ports: State
 - Transactions: State
 - Continuous Model: State

Diagram:

- Continuous Actors
 - Continuous Model (a Modal Model Actor)
 - State
 - Input/output ports
 - Transactions: State
 - Continuous Model: State
Project: Simulation of A Train System

- Discrete Event:
 - loading and unloading passengers
 - Change between modes
- Continuous dynamics:
 - Train accelerating and decelerating
Project: Simulation of A Train System

• Empty train (discrete):
 • Load passengers, until the train is full
• Full train (continuous & discrete):
 • Leave the station, start accelerating
 • Velocity control: bang-bang control
 • Get close to the destination, start baking until stop at the destination's station
• Arrive at the destination (discrete):
 • Unload passengers
More Details & Demo
Conclusion

- Build a hybrid system: the Train System using HyVisual
 - Based on block-diagram – straightforward, easily handle complicated hierarchical structures
- Hybrid Modelling:
 - Embrace discontinuities and discrete events along with the usual piecewise continuous signals
 - Provide modelling semantics and results that are not only predictable, but easily understandable
Hybrid and Multi-Formalism Modelling

Question?