
Comparison of Visual Studio’s VMSDK and AToM3

Matthias De Cock

University of Antwerp, Computer Science Department

matthias.decock@student.ua.ac.be

Abstract

This paper starts of by briefly underlining the importance of model-driven
engineering and then introduces two tools which can be used in this con-
text: it compares Microsoft Visual Studio’s Modeling and Visualization SDK
(VMSDK, 2010) and AToM3 (2008). Using the example of a production sys-
tem constructing APCs we explore these two tools both from a conceptual
and a practical point of view. Special attention is given to the support for:
modeling the system, validating the consistency and correctness of the system
and simulating an actual instance of such production system.

Keywords: Modeling, Meta-modeling, Model-driven Engineering,
Validation, Simulation, AToM3, VMSDK

1. Introduction

As software systems become increasingly complex the software develop-
ment techniques used today may prove to be inadequate to tackle this in-
creased complexity. There is a need for a new approach, which may be found
in model-driven engineering. However for this to become a viable alternative
to the traditional software development techniques good tools are required.
While other papers such as Pérez-Medin (2007) have compared tools with
specific goals in mind (in the case of Pérez-Medin (2007) Human Computer
Interaction) the goal of this paper is to compare two of these tools in the
most general way, the two tools are:

AToM3 A tool designed by the Modeling, Simulation and Design Lab of
McGill University in Canada. Currently a new version of the tool,
AToMPM is under development.

Preprint submitted to the university of Antwerp January 25, 2012



Visualization and Modeling SDK A software development kit that can
be used in Microsoft’s Visual Studio. This SDK was formerly known
as DSL Tools in Visual Studio 2005 but has been renamed to VMSDK
in the latest installment of the IDE.

To compare the two an example system is needed, in this paper we will use
a production system assembling armored personnel carriers (APCs). The
system consists of conveyor belts that carry components and connect different
machines, some of which require an operator in order to function properly.
As with most systems some constraint apply:

• A conveyor belt should not be connected to itself.

• A machine can have at most one output, with the only exception being
a quality control center, which has one output for the working compo-
nents and one for the broken components.

• A component generator has no incoming conveyor belts, it simply pro-
duces items which it deposits on the outgoing conveyor belt.

• Similarly a garage, storing the finished APC’s, should have not any
outgoing links as it is the end of the production line.

• Last but not least there is a set of cardinalities that need to be re-
spected, for example a component should only be connected to a single
conveyor belt. The same holds for operators and conveyors, an operator
can’t operate two machines at the same time.

Figure 1: A very basic example of a valid system.

2



The remainder of this paper will mostly focus on how to model, validate
and simulate this system in the ’Visualization and Modeling SDK’, and how
this compares to the same process in AToM3. In the next section we will
discuss the process of modeling the production system, after which validation
will be covered before proceeding to actual simulation of a constructed model
in section 4. In section 5 a global comparison of the two tools will be made,
finally leading to the conclusion in section 6.

2. (Meta-)Modeling

2.1. Class Diagram

In this phase one most often starts by declaring the different entities that
make up the system and this time it’s no different. Class by class we sculpt
a DslDefinition (Domain-specific Language Definition) as it is called in the
SDK. Each of these classes can be attributed with some domain properties.
For example the component ’Body’ has a property indicating the loadout of
this APC, since an APC can have either no loadout, a ’Riot’ loadout (water
cannon and wheels) or an ’Army’ loadout (machine gun and tracks instead
of wheels). Also it inherited the propery ’isBroken’ from its superclass.

Figure 2: The domainClass ’Body’, with properties ’Loadout’ and ’isBroken’.

Components need to be able to be linked in order to create models. In the
VMSDK this is achieved by connecting two DomainClasses with a referencing
relationship. In this relationship each class performs a specific role. A rather

3



simple example is that when connecting two conveyor belts together one
will act as the source and one acts as the target. As is expected from a
modeling language each relationship can be bounded by cardinalities, let
us for a moment consider the case when a machine and a conveyor belt
are linked together. One constraint stated that a machine (apart from a
quality control) should have at most one outgoing conveyor. So only once
can the machine act as the source of a ’MachineIsConnectedToConveyorBelt’
relationship, thus the cardinality should be set to ’0..1’.

This is the first limitation of the Visualization and Modeling SDK, where
AToM3 allows arbitrary cardinalities the VMSDK limits the options to:

• 0..*, an arbitrary number of times

• 0..1, zero or one times

• 1..1, exactly one time

• 1..*, at least one time

There is a way to enforce other cardinalities, using constraints as is described
in the next section, but official support would be desirable.

2.2. Visual Language

The construction of a visual language is achieved by creating ’Shape’
objects and linking them to specific domain classes. These shapes can be
extended using decorators, either text-based decorators, simply showing some
string, or icon decorators, displaying an image or icon. Based on the values
of the domain properties you can either show or hide a specific decorator or
change the value of a textual decorator (for example displaying the property
value itself).

In general the construction of the visual language is pretty intuitive, al-
though you need to know where to look. You can simply position a decorator
by choosing a region of the shape where it should be displayed. This is both
an advantage and a disadvantage of the tool, it is very easy to relocate a
decorator to another general location (InnerTopLeft, LowerBottomRight, ...)
but if you want to fine-tune the position of the decorator you can’t just drag
it to where you want to place it. You have to enter a manual offset (in inches)
relative to the location you specified. Draging and dropping is actually sup-
ported in AToM3, making it more suited for higher levels of customization.

4



Another limitation is that while you can change the font size and style of
a text decorator the text color and the actual font are fixed, which might be
a hindrance when displaying the text atop darker icons.

Figure 3: An overview of the entire diagram, with Classes and Relationships on the left-
handside and Visual Elements on the right. Notice the links between the classes and the
visual elements.

Once the domain classes, the relationships and the visual objects have
been created you can launch an instance of the meta-model, where you can
drag and drop new Objects from the toolbox, connect them using the rela-
tionships you designed earlier and create a actual model of the system.

5



3. Validation

There are three types of validation supported in the Visualization and
Modeling SDK:

Validation on request This type of validation allows for the model to be
in an incorrect state, but when a specific condition is triggered (the
model is opened/saved or the user presses the ’validation’ button) the
model is checked against these constraints and the user is notified of
any inconsistencies and is free to interpret the results as he sees fit.

Interactive constraints The first type of constraint actually prohibiting
the user from creating inconsistencies. In our example, should a user
want to connect a component to a conveyor that is already carrying
another component the cursor will change to reflect the fact that this
is not possible. If the user still tries to connect the two no connection
will occur, keeping the model consistent.

Hard constraints These constraints change the model in such a way that
the internal consistency of the model is guaranteed. Should a value in
the model change, rules may fire, changing other parts of the system
to reflect the new value.

In the example of the the production system the first two types of valida-
tion were used. A model can be checked for consistency using validation on
request and links between the models may or may not be allowed depending
on the situation (using interactive constraints).

It should be noted that adding constraints to a meta-model is not very
straight-forward in the VMSDK. In AToM3 actions and constraints form an
important part of a class description (and actually show up in the Class
Diagram), whereas in the Visualization and Modeling SDK the following
steps need to be taken to enable validation on request for a specific class:

1. (optional) Add a new subfolder to the project called ’CustomCode’

2. (optional) In this folder create another subfolder ’Validation’

3. Add a partial class description for the class you wish to validate

4. To this class description add a method checking the specific constraint

5. Mark this method as part of the validation process

6



Once you are familiar with the approach it’s not very complicated but
the fact remains that this still feels like a workaround while it should be
an integral part of the class itself. The same thing holds for the interac-
tive constraints where you have to create custom connectionBuilders and
tell the model that in the case of a connection between a machine and a
conveyor belt it should use the custom ’MachineIsConnectedToConveyor-
BeltBuilder.cs’ and not the automatically generated one.

Figure 4: Validation on request: The error messages refer to all four of the constrain
validations present in this model.

Figure 5: Interactive constraints: A legal connection between two conveyor belts, notice
the cursor indicating the validity of the connection.

Figure 6: Interactive constraints: notice how the cursor changed to reflect the fact that
this connection is illegal.

7



4. Simulation

In terms of the comparison between AToM3 and the VMSDK this is
the major letdown, just like the name ’Visualization and modeling SDK’
suggests, the focus is on the visualization and on the modeling of systems
rather than the actual simulation of the system. There is no support for
simulation whatsoever. Very small parts of the simulation process can be
achieved. Using T4 text templates you are able to decide which machines
are ready to produce, which operator has the highest stress value and so
on. But this too feels like a workaround, boiling down to adding a T4 text
template file, rightclicking it and then clicking on ’Run Custom Tool’.

Figure 7: Sample output of a T4 text template.

5. Global Comparison

Even though the last few sections may have convinced you otherwise
the VMSDK certainly is a decent tool, this comparison was slightly biased in
favor of AToM3 since we started from a project made in AToM3, and tried to
replicate it in the VMSDK. Basically we didn’t answer the question: ’Which
is the better tool?’ (which is a silly question to ask anyway since they both
have different goals in mind). Instead we answered the question: ’Given
the functionality of AToM3, is VMSDK able to do exactly the same?’ and
the answer was no. Had the tables been turned AToM3 probably wouldn’t
have been able to match all the features contained in the Visualization and
Modeling SDK either. This section will attempt to give an objective view
of both programs, describing VMSDK’s strong points and the areas where
there is still room for improvement, compared to AToM3.

8



• Strong points of the VMSDK:

Easy to use from a programmer’s POV The Visualization and Mod-
eling SDK is integrated in an IDE, an environment most program-
mers feel comfortable with. This results in a tool that is easy to
use and does exactly what you expect it to do.

Everything under the same roof Once you know your way around
the SDK it is fast to use. All the files can be accessed at once
without having to open multiple instances of the tool or without
having to close a file to make way for another one.

Easy design of graphical object Graphical objects are easy to cre-
ate and to design. The only two flaws are the fact that you can’t
change the font(color) and that you can’t simply drag and drop
decorators. Apart from that it is very intuitive and powerful.

• VMSDK: Room for improvement?

Support for simulation As mentioned before there is no support for
simulation, which is quite a letdown from this otherwise good tool.

Validation as a core concept Though validation is present in the
VMSDK it seems much more as an ’add-on’ than as a core concept.
In AToM3 they are directly linked to classes (or the entire model
depending on the scope).

Automatic Link Detection In the VMSDK you explicitly have to
choose a link type before choosing the source and target object.
However when connecting two objects often there is only one type
of relationship applicable given the classes of both the source and
the target. In AToM3 when you connect two items it automat-
ically detects which link is applicable and connects the objects.
In the case of multiple possibililities it asks the user which link
should be used to connect the two objects.

Learning Curve/Documentation The learning curve may prove to
be rather steep for people who have never used Visual Studio
before. This is further amplified by the fact that good documen-
tation is rather hard to find.

More options for cardinalities It would be desirable to have more
options instead of being forced into one of 4 categories.

9



6. Future work

As mentioned earlier it may be interesting to do a second comparison of
both tools, this time starting from a project specifically tailored for the Vi-
sualization and Modeling SDK and then trying to achieve the same results in
AToM3, this may deepen our insight in both tools, uncovering shortcomings
which may lead to additional features in future versions of both AToM3 and
VMSDK.

7. Conclusion

Both tools offer a unique perspective on model-driven engineering, and
demonstrate the viability of this approach. When comparing the function-
ality of both tools with respect to actual model-driven engineering AToM3
is certainly ahead. Mostly from a conceptual point of view (everything is
a (meta-)model and validation is an integral part of this model) but also
in practical terms, read: simulation. However with the Visualization and
Modeling SDK, Microsoft certainly made a step in the good direction, pro-
viding a solid tool that could very well serve as a good basis for a stand alone
program, expanding on its current functionality.

As a final remark; everybody interested in learning more about the Vi-
sualization and Modeling SDK should definetly take a look at Wills (2011).
It is a very instructive tutorial on how to get started with the SDK and will
greatly improve your insight in the subject.

References

AToM3, January 2008. Last release.
URL http://atom3.cs.mcgill.ca/

Pérez-Medin, J.-L., 2007. A survey of model driven engineering tools for user
interface design. Tech. rep., Laboratory of Informatics of Grenoble.

VMSDK, April 2010. Last release.
URL http://archive.msdn.microsoft.com/vsvmsdk

Wills, A. C., June 2011. Visualization and modeling sdk - intro lab. Online.

10


