
Statechart modelling of NPC
behaviour

Kevin Wyckmans



Overview

Introduction

Case study: Tank Wars
Modelling Game AI
Time
Code generation

Agent based spreading of diseases

2/25



Introduction

As the realism in games increases, so does the demand for more
sophisticated AI. This leads to more complex code. We can abstract
this to a higher level:

I Define REACTIONS for NPC’s on game EVENTS

⇒ Statecharts

3/25



Overview

Introduction

Case study: Tank Wars
Modelling Game AI
Time
Code generation

Agent based spreading of diseases

4/25



Structure of our models

Based on paper written by Jrg Kienzle, Alexandre Denault and Hans
Vangheluwe: Model-Based Design of Computer-Controlled Game
Character Behavior

I Character uses sensors to detect events.

I Reacts using actions or actuators
I Describe transformation of sensor input to actuator output

using simple components.
I Structure defined by class diagrams
I behaviour defined by statecharts

I Communicate using asynch. events.

5/25



Different abstraction levels

6/25



Sensors

I State of tank and it’s components evolve.
I Explicitly model generation of events using state diagrams

I Attach to class that contains all the state necessary

7/25



More complex example...

8/25



Analyzers

I Some events depend on multiple tank components
I Enemy in range?

9/25



Memorizers

I Make descisions based on events from the past

I Occurances of events can be remembered using attributes or
statecharts

I Sometimes elaborate data structures necessary (maps, ...)

10/25



Strategical and Tactical Deciders

I Strategical Decider: Decides on what goal to achieve
I Tactical Decider: How to achieve that goal

I This can be very complex!
I Each strategy should have a corresponding planner.

11/25



Strategical decisions

12/25



Tactical decisions

13/25



Executors

I Maps the decisions of tactical deciders to events that the
actuators understand

I Convert waypoints into directions, . . .
I Can be made more complex by taking physics into account

14/25



Coordinators

I Executors map events directly to actuators ⇒ Might lead to
inefficient and even incorrect behaviour

I Example: Turning of turret while attacking

15/25



Actuators

I At this level of abastraction: very simple actuators

I Each actuator is a seperate control class

16/25



17/25



Time Slicing

I Time-slicing vs. continuous time
I Statecharts purely eveny based

I On model level: Time is continuous
I Modelling freedom
I Symbolic analysis
I Simulation
I Reuse

I This has to be mapped to the target simulation
I If the slice is small enough, the approximation is acceptable

18/25



Bridging the gap

I Every slice a function with updated data is called

I Fill objects with new data

I map data to events using sensors ⇒ starting here,
propagation/triggering of events done entirely in statechart

I If all events finished or just before slice ends, return the
necessary commands

19/25



From statecharts to code

I Use atom3 to model statecharts

I Use a statechart compiler to generate code

20/25



Overview

Introduction

Case study: Tank Wars
Modelling Game AI
Time
Code generation

Agent based spreading of diseases

21/25



Overview

I Correlates to Roland’s project

I Visualisation of agent based spreading of an infectious disease
I Comparable to the system described above.

I The same abstraction levels are adequate.
I Sensors: eyes, Actuators: legs, . . .

22/25



Scientific possibilities

I Visualise the behaviour of people using various algorithms
I Use probabilities to introduce randomness

I Most people run away from sick persons
I A small amount tries to help them (doctors?)
I A hospital (cfr. refuel station) has a probability of curing a sick

person

23/25



Game-design possibilities

I If a person dies in a hospital, he becomes a zombie

I A subset of healthy people can be soldiers

I Very dynamic and complex system

I One person can be a player controlled character

24/25



Thank you for your attention.

Questions?

25/25


	Introduction
	Case study: Tank Wars
	Modelling Game AI
	Time
	Code generation

	Agent based spreading of diseases

