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Abstract

In this document we describe a practical implementation of explicit transformation modeling for
tra�c to Petri net transformations. We accomplish this by working in close conjunction with
AToM3[5], a tool for multi-paradigm modeling. By applying relaxation, augmentation and mod-
i�cation on both meta-models we obtain a tra�c to Petri net transformation meta-model which
we will use to compose transformation rules. We then implement a matching algorithm in Python
to locate transformation rule patterns in our tra�c model. Next we present a transformation al-
gorithm which will perform left hand side to right hand side tra�c to Petri net transformations.
Finally we de�ne a graph grammar which will specify in what order rules should be applied on a
tra�c model.

Keywords: explicit transformation modeling, model transformation, AToM3

1. Introduction

This paper will be centered around a practical example transformation for tra�c to Petri net
models. A minimum of background is however needed around the concept of model transformations.
Therefore we give a short de�nition of model transformations in section 2. In section 3 we dive
into the explicit modeling of transformations. We construct tra�c, Petri net and graph grammar
meta-models and models. We also implement generic matching and transformation functions. In
section 4 we present future work, in section 5 we conclude our �ndings and in section 6 we present
related work.

2. Model Transformation

Model transformations generally play a key role in model driven development. Before we start
explaining our implementation we should �rst de�ne what we understand as model transformation.
The concept is closely related to program transformation. Both have many practical uses but
perhaps the most widely known is to generate lower-level models from higher-level models. The
main idea is depicted in �gure 1. We start from a source meta-model which we then use to
create an instance of the source model. A transformation engine will then perform the rule based
transformation on the source model by applying a transformation de�nition. The �nal result of this
process is a target model which conforms to its corresponding meta-model.
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Figure 1: Concept of model transformation [1]

As models and meta-models are both typed graphs, we can transform them by applying graph
rewriting. How we should perform the rewriting will need to be speci�ed in the form of graph
grammar models. Such a model can be most easily visualized as a set of rules. Each of the rules
consists out of a left-hand-side (LHS) and a right-hand-side (RHS) graph. Rules will be matched
on the source model. If a match between the LHS and a sub-graph of the source model is found the
rule can be applied. The matched sub-graph in the source model is then replaced with the RHS
of the rule. During the transformation process the intermediate models can be a blend of both the
source and target notations. When a rule cannot be matched any more we proceed to the next rule
and repeat this until all rules are visited. The execution of the graph grammar ends when no more
rules can be matched. [6]

3. Explicit Transformation Modeling into Practice

In this section we present an explicit transformation modeling example. We will de�ne tra�c
and Petri net meta-models in subsection 3.1. We create a transformation de�nition meta-model in
subsection 3.2 and a graph grammar meta-model in 3.3. In 3.4 we construct a tra�c model and
in 3.5 we create the rule models which will be used by our graph grammar. Also we implement a
generic matching and transformation algorithm, the two workhorses of our transformation engine.
Finally in subsection 3.6 we show the result of applying our graph grammar on the tra�c model.

3.1. The Tra�c and Petri Net Meta-Model

As we discussed in section 2, we start with selecting a source meta-model and a target meta-
model. A meta-model de�nes how valid models can be created. It shows the di�erent components
alongside with their connection multiplicities. By using these meta-models we will not need to
rebuild a model from scratch. They promote re-usability, maintainability and validation [2]. To
model the meta-model we use a meta-meta-model. Because the meta-meta-model needs to be
su�ciently expressive enough we use the class diagram formalism included with AToM3 to construct
our meta-models. In the next two subsections we present both the tra�c and Petri net meta-models.

3.1.1. Tra�c Meta-Model

In �gure 2 we present our tra�c meta-model. We start with de�ning a T_Place which is an
abstraction for a drivable thing. At all time a T_Place can only have one vehicle driving on it.
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Two di�erent T_Place entities can be connected with each other with a T_Next connection. Each
T_Place can have one incoming and one outgoing T_Next connection. We currently can have
one type of vehicle in our tra�c model: A T_Car which will only be able to drive on one place
at a time. The most basic place our car will be able to drive on is a T_RoadSegment. Since
T_RoadSegment extends from T_Place it can also have T_Next connections. Finally we can
also split and join places by using the T_ForkSplit and T_ForkJoin places. A split can have one
additional connection to a place and a join is allowed to have one extra incoming connection from
a place.

Multiplicities:

  - From T_DrivesOn: 0 to 1

  - From T_Split: 0 to 1

  - To T_Join: 0 to 1

  - To T_Next: 0 to 1

  - From T_Next: 0 to 1

<<Abstract>>T_Place

Multiplicities:

  - To T_Split: 0 to 1

T_ForkSplit

T_RoadSegment

Multiplicities:

  - To T_DrivesOn: 0 to 1

T_Car

Multiplicities:

  - From T_Join: 0 to 1

T_ForkJoin

T_Next

Multiplicities:

  - To T_Place: 0 to N

  - From T_Place: 0 to N

T_DrivesOn

Multiplicities:

  - To T_Place: 0 to N

  - From T_Car: 0 to N

T_Join

Multiplicities:

  - To T_ForkJoin: 0 to N

  - From T_Place: 0 to N

T_Split

Multiplicities:

  - To T_Place: 0 to N

  - From T_ForkSplit: 0 to N

Figure 2: The tra�c meta-model

One more thing we had to do is to add the ability to compile tra�c models to ordinary Python1

classes. In our transformation engine we will then easily be able to import the model and perform
further operations on it. We implement our tra�c compiler in Python to maintain compatibility
with AToM3 . Implementing the compiler in Python will allow us to invoke its functionality from
within the AToM3 user interface. The idea is to abstract away the compilation process behind a
button. A user will then simply have to click this button to compile the model which can then
easily be imported into a transformation engine (as can be seen in �gure 6). Part of a compiled
tra�c model is shown in listing 1.

1Python: http://python.org/
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1 """

2 TrafficModel

3 """

4

5 from ContainerFunctionality import *

6

7 class TrafficModel(object):

8

9 def __init__(self):

10 self.__model = ModelContainer()

11

12 # Nodes

13

14 self.__obj34 = ModelNode({'type':'T_ForkJoin'})

15 self.__model.get_nodes().append(self.__obj34)

16

17 self.__obj33 = ModelNode({'type':'T_Car'})

18 self.__model.get_nodes().append(self.__obj33)

19

20 self.__obj27 = ModelNode({'type':'T_RoadSegment'})

21 self.__model.get_nodes().append(self.__obj27)

22

23 # Shortened for readability...

24

25 # Node connections

26

27 self.__obj34.get_inConnections().append(self.__obj37)

28 self.__obj34.get_inConnections().append(self.__obj42)

29 self.__obj34.get_outConnections().append(self.__obj43)

30

31 self.__obj33.get_outConnections().append(self.__obj35)

32

33 self.__obj27.get_inConnections().append(self.__obj44)

34 self.__obj27.get_outConnections().append(self.__obj38)

35

36 # Shortened for readability...

37

38 def get_model(self):

39 return self.__model

40

Listing 1: A compiled tra�c model

3.1.2. Petri Net Meta-Model

Our Petri net meta-model is shown in �gure 3. It consists of a PN_Place which can have a name
and a certain number of tokens. PN_Place nodes can be connected to a PN_Transition which in
its turn can have incoming and outgoing connections to instances of PN_Place. This simple yet
powerful formalism will be expressive enough to translate the logic behind our higher level tra�c
model.

3.2. A Tra�c - Petri Net Transformation Formalism

The creation of a rule-based transformation formalism will allow us to specify how patterns in
the source model will be translated to the target model. Generally speaking this boils down to
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Attributes:

  - name :: String

  - tokens :: Integer

Multiplicities:

  - To PN_ToTrans: 0 to N

  - From PN_FromTrans: 0 to N

PN_Place

Attributes:

  - name :: String

Multiplicities:

  - From PN_ToTrans: 0 to N

  - To PN_FromTrans: 0 to N

PN_Transition

PN_ToTrans

Multiplicities:

  - To PN_Transition: 0 to N

  - From PN_Place: 0 to N

PN_FromTrans

Multiplicities:

  - To PN_Place: 0 to N

  - From PN_Transition: 0 to N

Figure 3: The Petri net meta-model

creating a pattern speci�cation language. We can consider two popular approaches [4].

• A generic pattern speci�cation language will be able to use the same generic for all input
and output languages. Most tools using a generic pattern speci�cation language use a UML
object diagram inspired syntax.

• Customized pattern speci�cation languages have some advantage over generic ones: They
allow for customized visual representations which are adapted to the languages involved.
Also a customized syntax will prevent the user from creating non-legal patterns.

Knowing this we will opt for a customized pattern speci�cation language of which speci�cations can
be checked for conformance. For convenience we chose to implement these conformance checks in
Python. Ideally however, such constraints will be fully translated into a modeled action language
[4].

To create a transformation formalism meta-model we cannot simply reuse the source and target
meta-models. First of all to be able to specify useful patterns we must adapt the meta-models so
that they support these, normally illegal, constructions. Secondly it should also be possible to save
non-legal models to be worked on later. To accomplish this we perform relaxation, augmentation
and modi�cation on both the source and target meta-models. The resulting tra�c - Petri net
transformation meta-model is shown in �gure 4.

Since we also need to be able to import tra�c - Petri net models into our transformation engine
we implement a tra�c - Petri net compiler which compiles the model to an ordinary Python class.

Finally we also added an extra conformance check in Python in which constraints that are hard
to de�ne directly in the meta-model are veri�ed. The �rst constraint is that there must exactly
be one TP_Separator in a model. Secondly we check if all LHS entities are positioned on the
left-hand-side of the separator and vice versa for RHS entities. Finally a check is done to make sure
no colliding label attributes are found, i.e. two entities on one side of the separator can never have
the same label.

3.2.1. Relaxation

A �rst step of relaxation will be to reduce all minimal connection multiplicities to zero. Raising
all maximum multiplicities to unbounded would be an option to allow ill-formed results in interme-
diate steps. However in our tra�c - Petri net transformation model we chose not to raise maximum
multiplicities and work with generic links instead.
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Attributes:

  - label :: String

Multiplicities:

  - From TP_GenericLinkOut: 0 to N

  - To TP_GenericLinkIn: 0 to N

<<Abstract>>TP_Element

Attributes:

<<Abstract>>TP_LHS_Element

Attributes:

<<Abstract>>TP_RHS_Element

Attributes:

  - name_constraint :: String

  - tokens_constraint :: String

Multiplicities:

  - To TP_LHS_PN_ToTrans: 0 to N

  - From TP_LHS_PN_FromTrans: 0 to N

TP_LHS_PN_Place

Attributes:

  - name_constraint :: String

Multiplicities:

  - From TP_LHS_PN_ToTrans: 0 to N

  - To TP_LHS_PN_FromTrans: 0 to N

TP_LHS_PN_Transition

Attributes:

  - name :: String

  - tokens :: Integer

Multiplicities:

  - To TP_RHS_PN_ToTrans: 0 to N

  - From TP_RHS_PN_FromTrans: 0 to N

TP_RHS_PN_Place

Attributes:

  - name :: String

Multiplicities:

  - From TP_RHS_PN_ToTrans: 0 to N

  - To TP_RHS_PN_FromTrans: 0 to N

TP_RHS_PN_Transition

Attributes:

Multiplicities:

  - From TP_LHS_T_Split: 0 to 1

  - To TP_LHS_T_Join: 0 to 1

  - To TP_LHS_T_Next: 0 to 1

  - From TP_LHS_T_Next: 0 to 1

  - From TP_LHS_T_DrivesOn: 0 to 1

<<Abstract>>TP_LHS_T_Place

Attributes:

Multiplicities:

  - To TP_LHS_T_Split: 0 to 1

TP_LHS_T_ForkSplit

Attributes:

Multiplicities:

  - From TP_LHS_T_Join: 0 to 1

TP_LHS_T_ForkJoin

Attributes:

TP_LHS_T_RoadSegment

Attributes:

Multiplicities:

  - To TP_LHS_T_DrivesOn: 0 to 1

TP_LHS_T_Car

Attributes:

Multiplicities:

  - To TP_RHS_T_Next: 0 to 1

  - From TP_RHS_T_Next: 0 to 1

  - From TP_RHS_T_DrivesOn: 0 to 1

  - To TP_RHS_T_Join: 0 to 1

  - From TP_RHS_T_Split: 0 to 1

<<Abstract>>TP_RHS_T_Place

Attributes:

Multiplicities:

  - To TP_RHS_T_DrivesOn: 0 to 1

TP_RHS_T_Car

Attributes:

TP_RHS_T_RoadSegment

Attributes:

Multiplicities:

  - To TP_RHS_T_Split: 0 to 1

TP_RHS_T_ForkSplit

Attributes:

Multiplicities:

  - From TP_RHS_T_Join: 0 to 1

TP_RHS_T_ForkJoin

TP_Separator

Attributes:

Multiplicities:

  - To TP_GenericLinkOut: 0 to N

  - From TP_GenericLinkIn: 0 to N

TP_GenericNode

TP_GenericLinkOut
Attributes:

  - label :: String

Multiplicities:

  - To TP_Element: 0 to N

  - From TP_GenericNode: 0 to N

TP_GenericLinkIn
Attributes:

  - label :: String

Multiplicities:

  - To TP_GenericNode: 0 to N

  - From TP_Element: 0 to N

TP_RHS_PN_ToTrans
Attributes:

  - label :: String

Multiplicities:

  - To TP_RHS_PN_Transition: 0 to N

  - From TP_RHS_PN_Place: 0 to N

TP_LHS_PN_ToTrans
Attributes:

  - label :: String

Multiplicities:

  - To TP_LHS_PN_Transition: 0 to N

  - From TP_LHS_PN_Place: 0 to N

TP_LHS_PN_FromTrans
Attributes:

  - label :: String

Multiplicities:

  - To TP_LHS_PN_Place: 0 to N

  - From TP_LHS_PN_Transition: 0 to N

TP_RHS_PN_FromTrans
Attributes:

  - label :: String

Multiplicities:

  - To TP_RHS_PN_Place: 0 to N

  - From TP_RHS_PN_Transition: 0 to N

TP_RHS_T_Next
Attributes:

  - label :: String

Multiplicities:

  - To TP_RHS_T_Place: 0 to N

  - From TP_RHS_T_Place: 0 to N

TP_LHS_T_Join
Attributes:

  - label :: String

Multiplicities:

  - To TP_LHS_T_ForkJoin: 0 to N

  - From TP_LHS_T_Place: 0 to N

TP_LHS_T_DrivesOn
Attributes:

  - label :: String

Multiplicities:

  - To TP_LHS_T_Place: 0 to N

  - From TP_LHS_T_Car: 0 to N

TP_LHS_T_Next
Attributes:

  - label :: String

Multiplicities:

  - To TP_LHS_T_Place: 0 to N

  - From TP_LHS_T_Place: 0 to N

TP_RHS_T_Split
Attributes:

  - label :: String

Multiplicities:

  - To TP_RHS_T_Place: 0 to N

  - From TP_RHS_T_ForkSplit: 0 to N

TP_LHS_T_Split
Attributes:

  - label :: String

Multiplicities:

  - To TP_LHS_T_Place: 0 to N

  - From TP_LHS_T_ForkSplit: 0 to N

TP_RHS_T_Join
Attributes:

  - label :: String

Multiplicities:

  - To TP_RHS_T_ForkJoin: 0 to N

  - From TP_RHS_T_Place: 0 to N

TP_RHS_T_DrivesOn
Attributes:

  - label :: String

Multiplicities:

  - To TP_RHS_T_Place: 0 to N

  - From TP_RHS_T_Car: 0 to N

Figure 4: The tra�c - Petri net transformation model

3.2.2. Augmentation

To be used in a pattern speci�cation language both our source and target meta-model need to
be augmented with extra features that are required for the transformation. We added the pre�xes
TP_LHS and TP_RHS to tra�c and Petri net entities to avoid type collisions. Another reason
for this is that entities can have di�erent attributes and multiplicities depending on being a LHS
or a RHS entity. One extra motivation for adding extra info to the type names is that it will easily
allow for conformance checking since a valid rule never should have a TP_RHS entity in its LHS
and vice versa.

To clearly separate LHS from RHS entities we added a TP_Separator. Apart from being useful
in conformance checking, adding a separator will also give us a clear visual distinction between
what is LHS and what is RHS.

All entities (apart from the separator) inherit from the abstract entity TP_Element which has
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a label attribute. The label will be used by the transformation engine for identity matching on LHS
and RHS entities.

Finally we added a TP_GenericNode to our meta-model to make it easier to formulate trans-
formation rules. However we did not get this concept completely to work in AToM3 and therefore
had to make a switch to the GenericGraph meta-model included in the kernel of AToM3.

3.2.3. Modi�cation

We also did some modi�cations on the LHS and RHS entity attributes. It is important to
understand that, when used in a LHS context, attributes depict the role of constraints. We therefore
chose to append the su�x _constraint to the names of the attributes and change all the types to
String. Changing the types to String makes it possible to de�ne constrains such as <ANY> which
will match any attribute value.

3.3. Graph Grammar Meta-model

A graph grammar, also called a graph rewriting system, consists out of a collection of rules. It
describes in what order those rules should be applied on a source model to result in a target model.
To construct such a graph grammar model we created a graph grammar meta-model. It consists
out of one entity TP_Rule which accepts a name attribute and can be connected to itself. The
graph grammar meta-model is shown in �gure 5.

Attributes:

  - name :: String

Multiplicities:

  - To TP_NextRule: 0 to N

  - From TP_NextRule: 0 to N

TP_Rule

TP_NextRule

Multiplicities:

  - To TP_Rule: 0 to N

  - From TP_Rule: 0 to N

Figure 5: The graph grammar meta-model

Equivalent with all other meta-models we also implemented a graph grammar compiler. In
listing 2 we show how a graph grammar can be obtained. On lines 3-15 we try to �nd a start entity
for our grammar. A start entity has no incoming connections and is of type TP_Rule. If no start
entities are found we select all TP_Rule entities in our graph grammar. To implement fairness we
then randomly select a start entity out of the obtained set. In the __buildGG function we then
recursively continue to build the grammar beginning from our start entity. We stop if we encounter
a TP_Rule entity with no more outgoing connections. The result of the getGG function is then a
list of TP_Rule entities de�ning the order in which rules must be applied to the source model.

3.4. The Tra�c Model

The next step is to create a tra�c model using the tra�c meta-model we created in section 3.1.
We intentionally kept the model simple to maintain clarity. As can be seen in �gure 6, a car is
driving on one of the six road segments and there is one split and one join segment. After creating
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1 def get_GG( self ):

2 # Start nodes without in connection

3 startNodes = []

4 for s in self.__model.get_nodes():

5 if s.get_parameters()['type'] == 'TP_Rule':

6 inConnectionCount = 0

7 for inConnection in s.get_inConnections():

8 inConnectionCount = inConnectionCount + 1

9 if inConnectionCount == 0:

10 startNodes.append(s)

11 # If no start nodes found, use all nodes in model.

12 if len(startNodes) == 0:

13 for s in self.__model.get_nodes():

14 if s.get_parameters()['type'] == 'TP_Rule':

15 startNodes.append(s)

16 gg = random.sample(startNodes, 1)

17 return self.__buildGG(gg)

18

19 def __buildGG( self , gg ):

20 lastIndex = len(gg)-1

21 if lastIndex >= 0:

22 if gg[lastIndex].get_parameters()['type'] == 'TP_Rule'

23 and len(gg[lastIndex].get_outConnections()) > 0:

24 next = random.sample(gg[lastIndex].get_outConnections(), 1)

25 if next[0].get_parameters()['type'] == 'TP_NextRule'

26 and len(next[0].get_outConnections()) > 0:

27 # a nextrule can only be connectect to one rule

28 if next[0].get_outConnections()[0].get_parameters()['type']

29 == 'TP_Rule':

30 gg.append(next[0].get_outConnections()[0])

31 return self.__buildGG(gg)

32 return gg

Listing 2: Graph grammar functions

the model we compile it to a Python class by clicking the corresponding button. The compiled class
will be written to the same directory the model is saved to.
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Figure 6: The tra�c model

3.5. Transforming Tra�c to Petri Net Models

The next task is the actual transformation of the Tra�c model. However before being able to
transform a model we will �rst need to create a graph grammar consisting of a prioritized list of
rules to be matched on the source model. Next we implement a sub-graph matching algorithm
which will try and �nd LHS matches in the source model. After we located such a match we will
need to transform the model by replacing the match with the RHS.

3.5.1. Composing Rules

To compose these rules we use the tra�c - Petri net transformation meta-model we created in
subsection 3.2. We will not dive into every rule but instead discuss one example rule for transforming
tra�c join entities to their Petri net equivalence.
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Figure 7: A rule for transforming join entities to Petri nets

The rule model shown in �gure 7 describes the behavior of a TP_Join entity. It clearly separates
the LHS from the RHS by using the TP_Separator. To help with the transformation process we
connected the Petri net entities trough generic links with the join segment. Labels are given to
all entities except to generic links and nodes. We are well aware that for optimal behavior both
generic links and nodes should be labeled too. However since we used the GenericGraph meta-model
included with AToM3 this wasn't an option.

Checking if a rule is valid can be done by clicking on the validate button of the tra�c - Petri
net transformation formalism. The user will then immediately be presented with a pop-up message
as can be seen in �gure 8.
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Figure 8: An invalid rule

For LHS attribute constraints wild-cards can be used. Constraints can be given the value
<ANY> to match any attribute value (�gure 9). For RHS entities we could also allow attributes to
have a <COPIED> value to indicate that a value must be copied from the corresponding matched
sub-graph entity. However this remains future work and is not implemented yet.

Figure 9: Wild-card attribute values for LHS entities
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3.5.2. Constructing a Graph Grammar

By using the meta-model we de�ned in 3.3 we now construct our graph grammar model. The
order in which rules are executed is speci�ed by this model. In �gure 10 we show our tra�c - Petri
net graph grammar which consists out of 8 rules.

RoadToPN2a_RULE

RoadToPN3a_RULE

JoinToPN4a_RULE

Split7a_RULE

RoadToJoin5a_RULE

SplitToRoad6a_RULE

JoinToRoad8a_RULE

RoadToSplit9a_RULE

Figure 10: Tra�c - Petri net graph grammar

3.5.3. Sub-Graph Matching and Model Transformation

A transformation engine will try to match the LHS graph of a rule. If match is found it will
try to replace the matched sub-graph with the RHS of the matched rule. For the tra�c - Petri
net example we implemented a generic matching and transformation algorithm. A lot of study has
gone into exact sub-graph matching which is in fact a NP-complete problem [3]. In our tra�c -
Petri net example we used a generic matching algorithm which will visit all sub-graph entities of
the source model and try to recursively match them with the LHS graph. If the algorithm comes to
a dead end it will back-o� and try to match another candidate sub-graph. An advantage of using
a generic algorithm is that we can reuse it in all of our rules. Every rule then has a match function
which can be called to apply its matching algorithm on a given model.
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1 def __matchNode(self, ruleNode, node):

2 attributesMatched = True

3 for attribute in ruleNode.get_parameters():

4 # Ignore these

5 if attribute == 'label'

6 or ruleNode.get_parameters()[attribute] == '<ANY>'

7 or ruleNode.get_parameters()[attribute] == '':

8 continue

9 nodeAttribute = attribute

10 if attribute.endswith('_constraint'):

11 nodeAttribute = attribute.split('_constraint')[0]

12 if node.get_parameters().has_key(nodeAttribute):

13 if str(node.get_parameters()[nodeAttribute])

14 != str(ruleNode.get_parameters()[attribute]):

15 attributesMatched = False

16 break

17 if attributesMatched:

18 # The rule's node and the models node match

19 node.set_matched(True)

20 ruleNode.set_matched(True)

21 # Match the in_connections

22 for inConnection1 in ruleNode.get_inConnections():

23 if not inConnection1.get_matched():

24 match = False

25 for inConnection2 in node.get_inConnections():

26 if not inConnection2.get_matched():

27 if self.__matchNode(inConnection1, inConnection2):

28 match = True

29 break

30 if match:

31 continue

32 node.set_matched(False)

33 ruleNode.set_matched(False)

34 return False

35 # Match the out_connections

36 for outConnection1 in ruleNode.get_outConnections():

37 if not outConnection1.get_matched():

38 match = False

39 for outConnection2 in node.get_outConnections():

40 if not outConnection2.get_matched():

41 if self.__matchNode(outConnection1, outConnection2):

42 match = True

43 break

44 if match:

45 continue

46 node.set_matched(False)

47 ruleNode.set_matched(False)

48 return False

49 # Set the matching label for this node

50 if ruleNode.get_parameters().has_key('label'):

51 node.get_parameters()['label'] = ruleNode.get_parameters()['label']

52 return True

53 else:

54 return False

Listing 3: Recursive matching function
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Our recursive matching function is shown in listing 3. It takes as input parameters a ruleNode
and a node. The �rst part of the matching is done on the attributes. On line 5-7 we make sure we
do not match on the label attribute. We also ignore the attribute matching for wild-card values,
which are in our case the empty string and the value <ANY>. From lines 5 till 16 we perform the
actual matching of the attributes. Line 19-20 set �ags on both the rule entity and the model entity.
Continuing with line 21-48 we recursively match all incoming and outgoing connections. Finally on
line 51 we set the label on the model entity.

1 def __transform(self, model):

2 # First make the newModelPart by using the rhs model

3 newModelPart = copy.deepcopy(self.__rhsModel)

4 # Make sure all connections are ok

5 modelNodes = copy.copy(model.get_nodes())

6 for newNode in newModelPart.get_nodes():

7 if newNode.get_parameters().has_key('label'):

8 for node in modelNodes:

9 if node.get_parameters().has_key('label'):

10 if newNode.get_parameters()['label']

11 == node.get_parameters()['label']:

12 # Start replacing connections

13 inConnections = copy.copy(node.get_inConnections())

14 for inConnection in inConnections:

15 if not inConnection.get_matched():

16 newNode.get_inConnections().append(inConnection)

17 inConnection.get_outConnections().remove(node)

18 inConnection.get_outConnections().append(newNode)

19 outConnections = copy.copy(node.get_outConnections())

20 for outConnection in outConnections:

21 if not outConnection.get_matched():

22 newNode.get_outConnections().append(outConnection)

23 outConnection.get_inConnections().remove(node)

24 outConnection.get_inConnections().append(newNode)

25 model.get_nodes().remove(node)

26 # Insert newModelPart in the model

27 model.get_nodes().extend(newModelPart.get_nodes())

28 # Remove all remaining old parts from the model

29 # (labels that are in lhs but not in rhs)

30 modelNodes = copy.copy(model.get_nodes())

31 for node in modelNodes:

32 if node.get_matched():

33 model.get_nodes().remove(node)

34 elif node.get_parameters().has_key('label'):

35 del node.get_parameters()['label']

36 inConnections = copy.copy(node.get_inConnections())

37 for inConnection in inConnections:

38 if inConnection.get_matched():

39 node.get_inConnections().remove(inConnection)

40 outConnections = copy.copy(node.get_outConnections())

41 for outConnection in outConnections:

42 if outConnection.get_matched():

43 node.get_outConnections().remove(outConnection)

Listing 4: Transformation function
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In listing 4 we show our transformation function. On line 3 we instantiate the new model part
by making a copy of the RHS graph. On lines 5-25 we set the connections to our newly created
model part. We also remove old entities of the model who have matching labels with RHS entities.
On line 27 we continue with inserting the new sub-graph in the model. Finally on lines 30-43 we
further clean up the new model by removing and resetting temporary attributes which were needed
in the transformation process.

1 def match(self, model):

2 nac = False

3 for lhsRuleNode in self.__lhsModel.get_nodes():

4 for node in model.get_model().get_nodes():

5 nacMatched = False

6 # Try to match the NAC

7 for rhsRuleNode in self.__rhsModel.get_nodes():

8 if self.__matchNode(rhsRuleNode, node):

9 nacMatched = True

10 nac = True

11 for n in model.get_model().get_nodes():

12 n.set_matched(False)

13 if n.get_parameters().has_key('label'):

14 del n.get_parameters()['label']

15 for n in self.__rhsModel.get_nodes():

16 n.set_matched(False)

17 if nacMatched:

18 break

19 if nacMatched:

20 continue

21 # Match the LHS

22 if self.__matchNode(lhsRuleNode, node):

23 for n in self.__lhsModel.get_nodes():

24 n.set_matched(False)

25 print 'LHS rule matched'

26 self.__transform(model.get_model())

27 print 'Model transformed'

28 return True

29 for n in self.__lhsModel.get_nodes():

30 n.set_matched(False)

31 if nac:

32 print 'NAC matched'

33 else:

34 print 'No match for LHS rule'

35 return False

36

Listing 5: Main matching function

The recursive matching function is used in the matching on NAC and LHS graphs. In listing 5
our main matching function is shown. It takes a model as input parameter and will transform the
model if the LHS was matched.
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1 def run(self):

2 atleastOneRuleMatched = True

3 while atleastOneRuleMatched:

4 gg = self.__gg.get_GG()

5 atleastOneRuleMatched = False

6 for ruleNode in gg:

7 exec "from " + ruleNode.get_parameters()['name'] + " import *"

8 rule = eval(ruleNode.get_parameters()['name'] + '()')

9 print '--- Matching rule ---'

10 print rule

11 if rule.match(self.__model):

12 atleastOneRuleMatched = True

13 break

Listing 6: Main function

The �nal step in the transformation process is to apply our graph grammar on the model. We
iterate over the rules of the graph grammar and try to apply each rule. If a rule is matched we
restart the process until no more rules match. The function performing this logic is shown in listing
6.

1 >python Transform.py

2 -- Matching rule -- <RoadToPN2a_RULE.RoadToPN2a_RULE object at 0x01FBBED0>

3 LHS rule matched

4 Model transformed

5 -- Matching rule -- <RoadToPN2a_RULE.RoadToPN2a_RULE object at 0x01FBBF30>

6 LHS rule matched

7 Model transformed

8 -- Matching rule -- <RoadToPN2a_RULE.RoadToPN2a_RULE object at 0x01FBBFD0>

9 LHS rule matched

10 Model transformed

11 ...

12 -- Matching rule -- <RoadToPN2a_RULE.RoadToPN2a_RULE object at 0x02024BD0>

13 NAC matched

14 ...

15 -- Transformation done --

Listing 7: Transformation output

If we now execute our Transformation.py �le which binds everything together we get the output
in listing 7.

3.6. The Result

The result of the transformation process is shown in �gure 11. It shows the tra�c model we
de�ned in 3.4 along with its Petri net equivalent. Note that the result is still a mix of both Petri net,
tra�c and generic graph entities. Tra�c and generic graph entities can however easily be removed
by declaring additional rules.
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Figure 11: The transformed tra�c model

4. Future Work

In this study we do not yet fully match on attribute values. To support this each RHS attribute
should have a way to specify if its value needs to be <COPIED> from the matched sub-graph or
if its value is <SPECIFIED> in the RHS attribute itself.

In some cases it can be necessary to have labeled generic entities. Therefore another point of
focus for the future is to enable the use of our self-modeled TP_GenericNode and TP_GenericLink
instead of the GenericGraph meta-model included with the AToM3 kernel.

5. Conclusion

We implemented explicit transformation modeling for tra�c to Petri net transformations. In
our study we worked in close conjunction with AToM3. The results are however not bound to
this speci�c system. We created a transformation formalism by applying relaxation, augmentation
and modi�cation on both target and source models. We then used this formalism to compose
transformation rules for tra�c to Petri net models. We continued with creating a graph grammar
which de�ned the order in which rules must be applied. Finally we implemented our matching and
transformation algorithms which are the workhorses in the transformation process.
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6. Related Work

In [4] a proposal is done to explicitly model transformation de�nitions. Based on the components
of relaxation, augmentation, and modi�cation a cost-e�ective customized pattern speci�cation lan-
guage can be created. Due to its modularity explicitly modeling transformations allows for easy
addition of new behavior. Finally the concept of higher order transformations is explained as ample
motivation for the explicit modeling of transformations.
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