Model Driven Engineering Map Generation

Chris Vesters
chris.vesters@student.ua.ac.be

Contents

Design Space Exploration

L-System

Graph Transformation

Simulation

Conclusion \& Future Work

Contents

Design Space Exploration

Graph Transformation

Simulation

Conclusion \& Future Work

Design Space Exploration

- Find good / best instance
- Steps:

1. Generate a candidate
2. Check the candidate for feasibility
3. Evaluate the candidate
4. Repeat

- Several algorithms ${ }^{1}$:
- Exhaustive
- Random
- Hill Climbing
${ }^{1}$ Denil, J., Han, G., Persson, M., Liu, X., Zeng, H., Vangheluwe, H., 2013. Model-driven engineering approaches to design space exploration. Tech. rep

Contents

Design Space Exploration

L-System

Graph Transformation

Simulation

Conclusion \& Future Work

L-System: Introduction

- Introduced to model plant growth
- $\mathrm{G}=(\mathrm{V}, \omega, \mathrm{P})$
- An alphabet V
- An initial string ω
- A set of rules P
- Many extensions

L-System: Example

$$
\begin{aligned}
& V=0,1,[,],+,- \\
& \omega=0 \\
& P=\{(1 \rightarrow 11),(0 \rightarrow 1[-0]+0)\}
\end{aligned}
$$

L-System: Use

$$
\begin{aligned}
& V= \begin{cases}M: & \text { map growth entity } \\
I: & \text { intersection } \\
T: & \text { two-way road } \\
O: & \text { one-way road } \\
{[:} & \text { store state } \\
]: & \text { restore state } \\
+: & \text { angle }+90^{\circ} \\
-: & \text { angle }-90^{\circ}\end{cases} \\
& \omega=I[+M(n)][-M(n)][++M(n)] M(n) \\
& P=\left\{\begin{array}{lll}
P_{1}: & M(n) \rightarrow T(x) I\left[+M\left(\frac{n-x}{3}\right)\right]\left[-M\left(\frac{n-x}{3}\right)\right] M\left(\frac{n-x}{3}\right) \\
P_{2}: & M(0) \rightarrow \epsilon \\
P_{3}: & T(x) \rightarrow O(x)
\end{array}\right.
\end{aligned}
$$

L-System: Use

Difficulties:

- Randomness \rightarrow Stochastic L-Systems
- Analysis \rightarrow Interpret string

L-System: Use

CityGen Engine ${ }^{2}$:

${ }^{2}$ Parish, Y. I. H., Müller, P., 2001. Procedural modeling of cities

Contents

> Design Space Exploration

> L-System

Graph Transformation

Simulation

Conclusion \& Future Work

Graph Transformation: Related Work

 Riry Pheng ${ }^{3}$:
${ }^{3}$ Pheng, R., 2008. Procedural modeling for city map generation - final report

Graph Transformation: Project

Meta Model:

MapInformation
Attributes:
- remaining : : Integer
- size : : Integer

Graph Transformation: Project

Rules:

- Expand: North, East, South, West
- GrowRoad
- ConnectIntersections
- OneWay

Graph Transformation: Project

Feasibility:

- Strongly Connected Component

Desired Properties:

- Road distance close to Manhattan distance
- Minimize intersections on trajectory
- Cover as much as possible
- Roads are evenly distributed
- Multiple routes to an intersection

Metrics:

- Longest path
- Average minimal cut

Graph Transformation: Project

Space is huge \Rightarrow algorithm should produce results fast. Algorithm:

1. Select the candidate with the highest score
2. Generate all children
3. Check and evaluate each child

- Not feasible or lower score: reject
- Higher score: add as candidate

4. Repeat

Graph Transformation: Project

Figure: The initial map

Graph Transformation: Project

Figure: Iteration 1

Graph Transformation: Project

Figure: Iteration 10

Graph Transformation: Project

Figure: Iteration 50

Graph Transformation: Project

Figure: Iteration 100

Graph Transformation: Project

Figure: Iteration 150

Contents

Design Space Exploration

L-System

Graph Transformation

Simulation

Conclusion \& Future Work

Simulation: PyDEVS ${ }^{4}$ Model

- Cars move from intersection to intersection (trajectory)
- Only 1 car at an intersection
- Car changes speed when:
- Entering a new road
- Car before him changes its speed
- Reaching end of the road
${ }^{4}$ Bolduc, J.-S., Vangheluwe, H., Van Tendeloo, Y., 2000-2013. URL http://msdl.cs.mcgill.ca/projects/projects/DEVS/

Contents

Design Space Exploration

L-System

Graph Transformation

Simulation

Conclusion \& Future Work

Conclusion \& Future Work

Conclusion:

- Good metric is most important
- Time-expensive

Future Work:

- Houses, Stores, Offices, $\ldots \rightarrow$ Simulation
- Multiple lanes, traffic lights, maximum speed
- Initially start with Houses, etc and generate road network

