
UI Development
using Statecharts

 Detlev Van Looy

1

About me

• Detlev.VanLooy@student.ua.ac.be

• 1st Ma Informatica at University of Antwerp

2

Overview

• Introduction

• Summary “Rapid development of scoped
user interfaces” [1]

• My work

• Result

• Conclusions

• Questions

[1] Denis Dubé, Jacob Beard, H. Vangheluwe, 2009. Rapid

development of scoped user interfaces

3

Introduction(1)

• Development of complex User Interfaces

• Many components with different behaviour
and relations

• UIs should be easy to maintain

• Code-centric implementations are not
adequate

4

Introduction(2)

• Try to minimize “accidental complexity” [2]

• Model every aspect of the system at the most
appropriate level of abstraction

• Use Hierarchically-linked Statecharts to model
a Scoped User Interface

• In this case a UI for statecharts

[2] Brooks, F., 1987. No silver bullet: Essence and accidents of software

engineering.

5

Summary(1): intro

• As said in the introduction of this presentation

• Need to facilitate rapid, domain-specific
modelling of a UI

• Achieve this by modelling the behaviour of
each individual UI component

6

Summary(2): Scoped UIs

• UI where visual components
(buttons/windows/entities) are hierarchically
nested

• Top level is more general behaviour

• Deeper levels are more specific behaviour

• A scoped UI can bind an event to the most
tightly-binding component in a hierarchy

7

Summary(3): Scoped UIs

• Focus on domain/formalism-specific modelling
environments, these can improve productivity
as they:

- Match the user’s mental model

- Constrain the user to the problem at hand

- Separate domain-expert’s work from that of
others

- Can exploit features inherent to a specific
domain/formalism

8

Summary(4): Scoped UIs

• Two challenges when developing Scoped UIs:

- How to describe interaction between user and
entities of the UI

 => consider the entities as actors

- Dont create new specification of UI behaviour for
each formalism
=> have a generic specification at the root level

9

Summary(5): HlS

• Hierarchically-linked Statecharts is a
formalism for visually describing Scoped UIs

• Workflow:

- Specify abstract syntax (for example using UML
Class Diagrams)

- Model concrete visual syntax (associate a visual
entity)

- Specify UI behaviour using Statecharts, each
Statechart associated with a class, specifying the
reactive behaviour of that class

10

Summary(6): Example

• Specify abstract and concrete syntax

11

Summary(7): Example

• DC_Dchart represents the entire model. All
other entities are contained by this

• DC_Basic, DC_Composite, DC_History,
DC_Orthogonal, …

• Should all be familiar from using statecharts
for the Digital Watch assignment in MoSIS

12

Summary(8): Example

• Specify formalism-specific behaviour

• Some notes on event labels:

- x* action code is present

- x+ a different statechart handles the action

- <x> event generated by another statechart

- (x) initialization routine

- [x] event generated by the statechart itself

13

Summary(9): Example

• Button Behaviour

14

Summary(10): Example

• DC_Dchart behaviour

15

Summary(10): Example

• DC_Composite behaviour

16

Summary(11): Conlusion

• Given later together with my conclusions

17

My work(1)

• Explained in detail, one behaviour at a time

• But first some introduction

• My buttons menu:

18

My work(2)

• Button_Behaviour (same as original)

19

My work(3)

• DChart_Behaviour

20

My work(4)

• Creation of states

- Ctrl+right clicking on the canvas

 => ControlButtonPress3 event to DC_Dchart

 => Create event to Button behaviour

 => call the corresponding drawXstate() method

21

My work(5)

• Creation of edges

- Ctrl+left clicking on a state

 => ControlButtonPress1 event to DC_Dchart

 => go to “Creating_Edge*” state and lock input
=> mouse motion generates AnyMotion event
=> left clicking somewere generates ButtonPress1

 (cont.)

22

My work(6)

• Creation of edges (cont.)

 => results in 4 options: “failed”, “transition”,
 “containment” and “giveoptions”
=> afterwards a Done event is sent, the input is
 unlocked and the edge creation is finished

23

My work(7)

• The following behaviours all follow the same
pattern:

- An action by the user triggers an event in
DC_DChart

- A method is called to check which entity has to do
the behaviour

- An event is sent to the corresponding statechart
which executes the behaviour

24

My work(8)

• Behaviour statecharts

25

My work(9)

• Possible behaviour: selection, deselection,
deletion, containment, movement

• Containment only for composite/orthogonal
states

• Movement also takes DC_DChart to state
“moving+”, which is a bit like the creation of
an edge

26

My work(10)

• Example: selection

- Left click on an entity

 => Select event is sent to DC_Dchart

 => calls method to see which kind of entity was
 selected
=> sends Select event to corresponding
 statechart which calls its drawSelect method

- Orthogonal/composite drawSelect will recursively
select every contained entity

27

Result(1)

28

Result(2)

29

Result(3)

30

Conclusions

• It is possible to model complex, scoped,
formalism-specific behaviour using HlS.

• It is possible to develop it quickly

• The implementation is robust and easy to
maintain

31

Questions

• Thank you for your attention!

• Questions?

32

References

• [1] Denis Dubé, Jacob Beard, H. Vangheluwe,
2009. Rapid development of scoped user
interfaces

• [2] Brooks, F., 1987. No silver bullet: Essence
and accidents of software engineering.

