UI Development

using Statecharts
Detlev Van Looy

Universiteit Antwerpen

1

About me

e Detlev.VanLooy@student.ua.ac.be
e 1st Ma Informatica at University of Antwerp

Universiteit Antwerpen

p

Overview

e Introduction

e Summary “"Rapid development of scoped
user interfaces” [1]

e My work

e Result

e Conclusions
e Questions

[1] Denis Dubé, Jacob Beard, H. Vangheluwe, 2009. Rapid
development of scoped user interfaces

Universiteit Antwerpen

3

Introduction(1)

e Development of complex User Interfaces

e Many components with different behaviour
and relations

e Uls should be easy to maintain

e Code-centric implementations are not
adequate

Universiteit Antwerpen

4

Introduction(2)

e Try to minimize “accidental complexity” [2]

e Model every aspect of the system at the most
appropriate level of abstraction

e Use Hierarchically-linked Statecharts to model
a Scoped User Interface

e In this case a Ul for statecharts

[2] Brooks, F., 1987. No silver bullet: Essence and accidents of software
engineering.

Universiteit Antwerpen

5

Summary(1l): intro

e As said in the introduction of this presentation

e Need to facilitate rapid, domain-specific
modelling of a UI

e Achieve this by modelling the behaviour of
each individual Ul component

Universiteit Antwerpen

6

Summary(2): Scoped Uls

e UI where visual components
(buttons/windows/entities) are hierarchically
nested

e Top level is more general behaviour
e Deeper levels are more specific behaviour

e A scoped UI can bind an event to the most
tightly-binding component in a hierarchy

Universiteit Antwerpen

7

Summary(3): Scoped Uls

e Focus on domain/formalism-specific modelling
environments, these can improve productivity
as they:

- Match the user’s mental model
- Constrain the user to the problem at hand

- Separate domain-expert’s work from that of
others

- Can exploit features inherent to a specific
domain/formalism

Universiteit Antwerpen

8

Summary(4): Scoped Uls

e Two challenges when developing Scoped Uls:

- How to describe interaction between user and
entities of the UI

=> consider the entities as actors

- Dont create new specification of UI behaviour for
each formalism

=> have a generic specification at the root level

Universiteit Antwerpen

9

Summary(5): HIS

e Hierarchically-linked Statecharts is a
formalism for visually describing Scoped Uls

e Workflow:

- Specify abstract syntax (for example using UML
Class Diagrams)

- Model concrete visual syntax (associate a visual
entity)

- Specify UI behaviour using Statecharts, each
Statechart associated with a class, specifying the
reactive behaviour of that class

Universiteit Antwerpen

10

Summary(6): Example

e Specify abstract and concrete syntax

DC_DChartContains \

-name

Universiteit Antwerpen

11

Summary(7): Example

e DC_Dchart represents the entire model. All
other entities are contained by this

e DC_Basic, DC_Composite, DC_History,
DC_Orthogonal, ...

e Should all be familiar from using statecharts
for the Digital Watch assignment in MoSIS

Universiteit Antwerpen

12

Summary(8): Example

e Specify formalism-specific behaviour
e Some notes on event labels:

X*
X+
<x>
(x)
[X]

action code is present

a different statechart handles the action
event generated by another statechart
initialization routine

event generated by the statechart itself

Universiteit Antwerpen

13

Summary(9): Example

e Button Behaviour

<Orthogonal Buttons-

.-"""-.--_

=5iaba Bution==

Orthogonal Mode

State Mode

History Mode

<CompoEits Buthon:-
<Creae="
Compasite Mode

<Creaie="

SO) e
=Hisiony BLiton=
\—@ oTEahEs"

Universiteit Antwerpen

14

Summary(10): Example

e DC Dchart behaviour

Create DChart Entity+

=Contro-EutonPrass-d-

fereate)”

.l
senviceLayoutRequests
<Controi-EutionFress- ="

Universiteit Antwerpen

15

Summary(10): Example

e DC_Composite behaviour

hierarchicalConnect* [HEConnec]

hierarchicalDisconnect™

Idie reguestlayoutOnCldParent™ req

[laamodelCraate) [drop] NatConnect]
{lnadModelConnect)
MoParent
[Dons] <DChanSeiect-"
[Fequest arp] [Cane]
=DChartDrop-- Request Drop*
<=dit= Edi.ti-

Universiteit Antwerpen u

16

Summary(11): Conlusion

e Given later together with my conclusions

Universiteit Antwerpen

My work(1)

e Explained in detail, one behaviour at a time
e But first some introduction
e My buttons menu:

Gio]

Universiteit Antwerpen

My work(2)

e Button_Behaviour (same as original)

Button_Behaviour

<Create>*

<Create>"

<HistoryButton=
<Create="

History Mode

Universiteit Antwerpen

e DChart Behaviour

DChart_Behaviour

19

My work(3)

Create DChart Entity

<ControlButtonPress3d=

Idle2

<Deselect=+

[Done]

<ControlButtonPress! =

Q [GiveOptions]
ra

=AnyMotion=

<Selects

<Contain=+
<Delete=+

<Movex

Creating Edge*

LA <ButtonPress1=*
Create Edge

<zButtonReleasel=

<AnyMotion=

Universiteit Antwerpen

My work(4)

e Creation of states
- Ctrl+right clicking on the canvas

=> ControlButtonPress3 event to DC_Dchart
=> Create event to Button behaviour

=> call the corresponding drawXstate() method

Universiteit Antwerpen

My work(5)

e Creation of edges
- Ctrl+left clicking on a state
=> ControlButtonPressl event to DC_Dchart

=> go to "Creating_Edge*” state and lock input
=> mouse motion generates AnyMotion event
=> |eft clicking somewere generates ButtonPress1

(cont.)

Universiteit Antwerpen

My work(6)

e Creation of edges (cont.)

=> results in 4 options: “failed”, “transition”,
“containment” and “giveoptions”

=> afterwards a Done event is sent, the input is
unlocked and the edge creation is finished

Universiteit Antwerpen

My work(7)

e The following behaviours all follow the same
pattern:

- An action by the user triggers an event in
DC_DChart

- A method is called to check which entity has to do
the behaviour

- An event is sent to the corresponding statechart
which executes the behaviour

Universiteit Antwerpen

My work(8)

e Behaviour statecharts

Basic_Behaviaur

<BasicDeselect>
<BasicSelect>*

<BasicMove>"*)
. <BasicDelete>"

<ComposieSelect" _com positeDeletes*

<CompositeDeselect-*

. <CompositeContain=*
<CompositeMove=*

Universiteit Antwerpen

My work(9)

e Possible behaviour: selection, deselection,
deletion, containment, movement

e Containment only for composite/orthogonal
states

e Movement also takes DC_DChart to state
“moving+"“, which is a bit like the creation of
an edge

Universiteit Antwerpen

My work(10)

e Example: selection
- Left click on an entity
=> Select event is sent to DC_Dchart

=> calls method to see which kind of entity was

selected
=> sends Select event to corresponding
statechart which calls its drawSelect method

- Orthogonal/composite drawSelect will recursively
select every contained entity

Universiteit Antwerpen

27

Result(1)

Scopedul

Orthogonal Composite

OiQll|loioO

Orthogonall

®

Historyl

O

Basic2 Basic3

Universiteit Antwerpen u

Compositel
Orthogonall
O trigger O
Basic2 Basic3
Orthogonal2
: trigger
trigger
trigger
Basicd

Basich

28

Result(2)

Compaositel
Orthogonall
O trigger O
Basic2 Basic3
Orthogonal2
: trigger
trigger gasic1

trigger

Basic4

Basich

Universiteit Antwerpen

29

Result(3)

Compositel Compositel
Orthogonall Orthogonall

: trigger : trigger :

Basicl Basic2 Basicl Basic?

O O

Universiteit Antwerpen

30

Conclusions

e It is possible to model complex, scoped,
formalism-specific behaviour using HIS.

e It is possible to develop it quickly

e The implementation is robust and easy to
maintain

Universiteit Antwerpen

31

Questions

e Thank you for your attention!
e Questions?

Universiteit Antwerpen

32

References

e [1] Denis Dubég, Jacob Beard, H. Vangheluwe,
2009. Rapid development of scoped user
interfaces

e [2] Brooks, F., 1987. No silver bullet: Essence
and accidents of software engineering.

Universiteit Antwerpen

