
UI Development Using Statecharts

Detlev Van Looy

University of Antwerp

Abstract

In this paper, I summarize ”Rapid Development of Scoped User Interfaces”[3].
I then explain how I created a simplified example modelling a Scoped UI for
creating statecharts using hierarchically linked statecharts in detail and re-
port my findings.

Keywords: scoped UI, hierachically linked statecharts, summary, example

1. Introduction

When developing a complex User Interface, there may be many different
components which may all have very different behaviour and relations. A
user interface should also be easy to maintain and adapt, to keep up with
constantly changing system requirements. The problem is that code-centric
implementations of a UI are no longer adequate. An interface developer
needs to try to minimize ”accidental complexity” [2]. The author of the
original paper [3] claims that ”an elegant solution to these problems may
be found in Multi-Paradigm Modelling [4]. By modelling every aspect of
the system-to-be-built, at the most appropriate level of abstraction, using
the most appropriate formalisms, it becomes possible to completely capture
the structure, behaviour and visual appearance of a UI, to rapidly generate
prototype implementations, to easily adapt the UI as project requirements
change, and, finally, to synthesize a UI and maintain it.” I will further test
this claim by checking for myself that the use of Hierarchically-linked State-
charts to model Scoped User Interfaces does indeed keep things simple.

There have been many works about the modeling of User Interfaces.
Works using HlS in particular are obviously the original paper, and also

Email address: Detlev.VanLooy@student.ua.ac.be (Detlev Van Looy)



”Modelling the Reactive Behaviour of SVG-based Scoped User Interfaces
with Hierarchically-linked Statecharts” [1].

In section 2 I give the summary of ”Rapid Development of Scoped User
Interfaces”[3]. The following section explains how I implemented the UI.
Then section 4 shows what the UI looks like and how its used. The next
section compares my implementation with that of others. Finally I give
conclusions and possible future work.

2. Summary

The following is a summary of ”Rapid Development of Scoped User
Interfaces”[3].

2.1. Introduction

Complex behavioural relationships between UI components can be dif-
ficult to express, encode and maintain. A developer must also be able to
quickly adapt to changing system requirements. A developer must minimize
accidental complexity (No Silver Bullet). The project is about facilitating
rapid, domain-specific modelling of the UI, and believes this may best be
achieved by explicitly modelling the behaviour of each individual UI compo-
nent. The approach used is different from related research in two ways:

1. It attempts to solve the problems of UI development by casting it as a
pure language engineering problem.

2. It is primarily concerned with modelling the reactive behaviour of the
class of user interfaces that are made up of hierarchically-nested enti-
ties.

2.2. Scoped User Interfaces

A Scoped User Interface is one in which reactive visual components such
as buttons and windows, but also domain-specific entities, are hierarchically
nested. A Scoped UI, then, is one which has a notion of hierarchical scope,
and can bind an event to the most tightly-binding component in a hierarchy,
based upon event coordinates. We focus on domain/formalism-specific mod-
elling environments which have the potential to greatly improve productivity
as they:

1. Match the user’s mental model of the problem domain;

2



2. Maximally constrain the user (to the problem at hand, through the
checking

3. Domain constraints) making the language easier to learn and avoiding
modelling errors by construction”;

4. Separate the domain-expert’s work from analysis and transformation
expert’s work;

5. Are able to exploit features inherent to a specific domain or formalism.
This will for example enable specific analysis techniques or the synthesis
of efficient code exploiting features of the specific domain.

Two challenges when developing Scoped UIs:

1. Describing the interaction between user on the one hand and the various
entities in the UI on the other hand. Solve this by considering the
entities as actors.

2. Avoid creating an entirely new specification of UI behaviour for each
formalism. Solve this by having a single generic specification at the root
level. Scope-specific modifications can then be made to this generic
specification.

2.3. Hierarchically-linked Statecharts

Hierarchically-linked Statecharts (HlS) is a formalism for visually describ-
ing the structure and behaviour of Scoped UIs. HlS make it easier to develop
applications with complex UI behaviour faster and more reliably. Specifically,
HlS entails the following workflow:

1. One uses an appropriate formalism, such as UML Class Diagrams, to
specify the Abstract Syntax of the visual language. This entails spec-
ifying all elements in the domain one wishes to model, and qualifying
their relationships with other elements. This Class Diagram, together
with constraints over its elements is commonly known as a meta-model.

2. Subsequently, one models the Concrete Visual Syntax by associating a
visual entity (such as an iconic shape) of the application being devel-
oped.

3. One finally specifies UI behaviour using Statecharts, such that each
Statechart is associated with a class and specifies the reactive behaviour
of each instance of that class.

2.4. Example

For the implementation, the AToM tool is used.

3



Figure 1: DCharts Meta-model in the Class Diagram formalism

2.4.1. Specifying DCharts Abstract and Concrete Syntax

The abstract syntax of the DCharts visual language, is shown in Fig.1.
The concrete syntax is known from using DCharts for the wristwatch assign-
ment in MoSIS.

• DC DChart is a representation of the entire model. All other entities
will be contained by this entity.

• DC Basic corresponds to a simple state that does not hierarchically
contain others.

• DC Composite is nearly identical to DC Basic. A major structural
difference is that it can contain other states.

• DC History is the history (pseudo-)state.

• DC Orthogonal is an orthogonal block that allows for concurrently
active states.

4



Figure 2: Button Behaviour Statechart

2.4.2. Specifying Formalism-specific Behaviour Using DCharts

The above describes the abstract and concrete syntax of the visual lan-
guage, however we still need to model the behaviour of a language-specific
visual modelling environment. In the following, the labels on the states and
transitions of the UI behaviour Statecharts use a custom notation:

• A star: x* indicates that action code is present.

• A plus: x+ indicates that a different Statechart handles the action.

• Parenthesis: <x>indicate that the trigger event is generated by another
Statechart.

• Regular brackets: (x) indicate the event was generated by the initial-
ization routine for the entity when it is first instantiated.

• Square brackets: [x] indicate that the event was generated by the Stat-
echart itself, usually within the action code of a state.

Button Behaviour model. Shown in Fig.2. When the button to cre-
ate entity X is pushed, the events <Reset>” and <X Button>” are sent to
this Statechart. <Reset> takes us to state Idle. <X Button> moves it to

5



Figure 3: DC DChart behaviour Statechart

a state whereby entity X can get instantiated. It then waits for an event
requesting the creation of that entity. The <Create>” event is generated by
the DC DChart specific behaviour Statechart when it intercepts and handles
the Model Action” event.

DChart entity-specific behaviour models. All visual entities of the
DCharts formalism require their own behaviour models. The most impor-
tant are the root entity that contains all other entities, and the composite
state.

DC DChart behaviour Statechart. Shown in Fig.3. Following events trig-
ger interesting behaviour:

1. <Control-Button-Press-3> indicates a new DCharts entity should be
added to the canvas. The actual creation of the entity is handled by
the Button Behaviour model above.

2. <Control-Button-Press-1 triggers a modal lock, forcing all events to be
routed only to this Statechart. The lock is released when an arrow is
created <Arrow Created>* or when the process is aborted Reset*. For
the convenience of the user, only transitions may be drawn, a drag-and-
drop behaviour model exists for creating and destroying containment
relationships (shown later).

DC Composite behaviour Statechart. Shown in Fig.4. The behaviour of
DC Composite is the most complex, fortunately it is also re-usable by many

6



Figure 4: DC Composite behaviour Statechart

other entities. There are two possibilities for initialization:

1. An interactive session is in effect, the (create) trigger signals the cre-
ation of a new DC DChart. Immediately, the user is presented with
a dialog asking to which of the entities in the region of the newly cre-
ated DC Composite, they would like to contain the new composite
state. If it is succesfully connected to a DC DChart or another DC
Composite, then the [didConnect] trigger is generated, followed by a
<layoutRequest> event to the container, and finally a [Done] event to
set the state to HasParent. If the composite state is not succesfully
connected, a [didNotConnect] event is generated and the active state
is set to NoParent.

2. The model is being loaded, a (loadModelCreate) event is first sent, set-
ting the active state to NoParent. Then, a second (loadModelCreate)”
event is sent if a containing relationship is instantiated with this DC
Composite as its parent, thus setting the active state to HasParent”.

The following is a list of all the events that occur after the initialization
phase:

1. The <DChartSelect>* event makes it so all hierarchival children are
selected.

2. The <Edit> event indicates the user has opened an edit dialog for the
DC Composites attributes. This may trigger requests for layout.

3. The <DChartDrop> event indicates this composite state, among po-
tentially many other entities has just been dragged and then dropped.
This generates [Done] to restore the state to NoParent or HasParent.

7



Figure 5: DC HyperEdge behaviour Statechart

Followed by [Drop], this makes it so hierarchical connection/disconnection
is attempted. The latter occurs only when the entity has been dropped
outside of its parent container and the user explicitly agreed to discon-
nect it. This triggers a <layoutRequest> followed by an attempt to
hierchically connect the disconnected composite state in its new loca-
tion.

4. The <DChartDelete> event indicates that this composite state has to
be deleted.

DC HyperEdge behaviour Statechart. Shown in Fig.5. Trivially simple,
a directed edge with one source and one target. Initialized with a (create)
event, after that is awaits <Edit>* to apply changes made in its edit dialog.
These affect the label associated with the transition.

2.4.3. Conclusion

It is now shown that it is possible to model complex, scoped, formalism-
specific UI behaviour using HlS.

3. Implementation

In this section I will explain how I implemented the scoped UI for creating
a statechart using HlS. I will do this one behaviour at a time, so first I
will explain creation of states, then creation of edges, etc. Before I start
explaining how I implemented this, I will first say what is lacking from my
implementation:

1. I am missing the option to edit states/edges.

2. I am missing proper drawing of edges. A transition in my imple-
mentation is a straight line and always drawn from the middle of the
righthandside of a State to the middle of the lefthandside of a State.

The main reason for this is because I felt that I had already done enough for
this experiment to be able to draw conclusions. Another reason is that the
process of adding additional behaviour is very repetitive and always follows

8



Figure 6: Buttons menu

the same basic plan. This is explained below. Another thing to note is
that for simplicity I put every UI component in the same statechart, using
orthogonal states. Because I didn’t have many components this was easier
than making a new statechart for every component.

Buttons menu.
Before I can explain creation of entities I must first explain the behaviour of
my button menu. When running my implementation, the first thing you will
see is the buttons shown in Fig.6.

Clicking one of these will trigger an <XButton>and a <Reset>event
in the Button Behaviour statechart (Fig.7) depending on which button was
clicked. My Button Behaviour Statechart is exactly the same as in the orig-
inal paper.

Creation of states. A state is created by ctrl+rightclicking on the can-
vas. This sends a <ControlButtonPress3>event to my DChart Behaviour

Figure 7: Button Behaviour Statchart

9



Statechart shown in Fig.8. This then sends a <Create>* event to my Button
Behaviour Statechart, which will call the correct drawing method, depending
on which mode it is in. In my implementation it was not necessary to make
the Button Behaviour send another event to for example the basic state be-
haviour statechart, because at that point it is already known what has to be
drawn, so in this example it would just call drawBasicState(). I’ve made it
so states look almost exactly as in AToM3 to make it feel familiar.

Creation of edges. Creation of an edge is initiated by ctrl+leftclicking
on a state, this sends a <ControlButtonPress >event to my DChart Be-
haviour Statechart putting us in state ”Creating Edge*” and locking all input
to this statechart. Every time we enter this state, a method drawShowLine()
is called, this draws an edge from the clicked state to the cursor, indicating
where the edge will go. Everytime the mouse moves we send an <AnyMotion
>event, making us re-enter ”Creating Edge*” and updating the showline.
Clicking the left mouse key will then send a <ButtonPress1*>event. There
are many options now depending on which state the transition originates
from and what the user clicked. We call a method createEdgeHelper() to
figure out what needs to happen, there are 4 options:

1. The user did not click on a state or a state to which an edge is impossible
(for example a state can not contain itself) this will result in either

Figure 8: DChart Behaviour Statchart

10



nothing happening or an error being shown, saying why the edge is
impossible. A [Done] event is sent and we are done with the creation
of the edge.

2. The user clicked on a state and we know for sure it has to be a transition
(for example from one basic state to another basic state) this will result
in drawTransition() being called. Afterwards a [Done] event is sent and
we are done with the creation of the edge.

3. The user clicked on a state and we know for sure it has to be a contain
(for example from an orthogonal state to a basic state which is not
yet contained by another state) this will result in drawContainment()
being called. Afterwards a [Done] event is sent and we are done with
the creation of the edge. (Actually this will also send a <Contain>+
event, because we need to contain something, but this is explained
later.)

4. The user clicked on a state and we can not know for sure what it has
to be (for example from a composite state to a basic state which is
not yet contained by another state) this will result in a [GiveOptions]
event being sent, which asks the user whether he wants the edge to be
a transition or a contain. The rest is then handled the same way as 2
or 3.

Selection of entities. The general plan for adding behaviour from now
on is always the same:
following some action by the user, we send an event in our DChart Behaviour
Statechart which then calls a method to decide what to do after which an
event is sent to the appropriate Statechart. This statechart will then execute
the necessary behaviour. Figures 9, 10, 11, 12, 13, show the behaviour for
all entities.

Figure 9: Basic Behaviour Statchart

So for selection of entities, when the user leftclicks an entity, a <Select>+
event is sent to the DChart Behaviour Statechart. This calls a helper function
typeHelper() to see which kind of entity was selected, based on that a select

11



Figure 10: Orthogonal Behaviour Statchart

Figure 11: Composite Behaviour Statchart

event is sent to the corresponding statechart. This will draw the selection
of that entity (turns the colour of it to red). Note that each type may have
different behaviour, e.g. for orthogonal and composite states we also have
to select everything which is contained within those states. This is done via
recursion from top to bottom.

Deselection of entities. For deselection of entities, for example when
the user leftclicks on a blank spot on the canvas, a <Deselect>+ event is
sent to the DChart Behaviour Statechart. This calls a helper function type-
Helper() to see which kind of entity has to be deselected (if any), based on
that a deselect event is sent to the corresponding statechart. This will draw
the deselection of that entity (turns it back to its original colour). Note that
each type may have different behaviour, e.g. an orthogonal state has to turn
grey and a composite state has to turn blue (or green if it is default). Again
a recursive method handles the deselection of everything which is contained.

Deletion of entities. For deletion of entities, when the user presses the
Delete key, a <Delete>+ event is sent to the DChart Behaviour Statechart.
This calls a helper function typeHelper() to see which kind of entity has to
be deleted (if any), based on that a delete event is sent to the correspond-
ing statechart. This will draw the deletion of that entity (removes it from
the canvas). When an entity is deleted all outgoing and incoming edges (in-
cluding the invisible containment edges) are deleted as well. Deletion of an
orthogonal or composite state does NOT delete the entities it contains. Note
that each type may have different behaviour, e.g. an orthogonal state has
to delete all outgoing containment edges while a basic state does not have

12



Figure 12: History Behaviour Statchart

Figure 13: Edge Behaviour Statchart

those.
Containment of entities. Containment of an entity is when an orthog-

onal/composite state wraps itself around the entities it contains. This can
happen in two cases:

1. A containment edge has been drawn

2. An item which is contained has moved

Note we do not send a containment event when an entity is deleted.
For containment of entities, a <Contain>+ event is sent to the DChart

Behaviour Statechart. This calls a helper function typeHelper() to see which
kind of entity has to do the containment (note that this can only be either
an orthogonal or a composite state), based on that a contain event is sent to
the corresponding statechart. This will draw the containment by the entity.
Note that this is a recursive function which goes from bottom to top, because
the state which is doing containment might be contained by another state,
etc..

Movement of entities. For movement of entities, a movement is initi-
ated when the user leftclicks (and holds it down) an already selected entity,
a <Move>+ event is sent to the DChart Behaviour Statechart. This takes
us to state ”Moving+” and locks all input. Every time we enter ”Moving+”
it calls a helper function typeHelper() to see which kind of entity has to be
moved (note that this can not be an edge, because we do not allow move-
ment of edges by themselves), based on that a move event is sent to the
corresponding statechart and to the Edge Behaviour Statechart. This will

13



draw the movement of the state and every edge which needs to be moved.
Note that each type may have different behaviour, e.g. an orthogonal state
has to move everything it contains. Again a recursive method handles the
movement of everything which is contained. When we are in state ”Mov-
ing+”, everytime the mouse moves we send an <AnyMotion >event, making
us re-enter ”Moving+” and thus updating the drawing. When the user re-
leases the left mouse button, a <ButtonRelease1 >event is sent followed by
a <Contain >+ event, finalizing the movement of the entity.

4. The Result

An example of what the result looks like is shown in Fig.14. We see that
the bottom orthogonal state is currently selected because it is outlined in
red, together with the states it contains. I already mentioned what buttons

Figure 14: Result

to press for which behaviour in the section above, but I will give a short list
of all buttons here:

14



• Left click one of the buttons at the top to start creating entities.

• Ctrl+right click on the canvas to create the desired entity.

• Left click on an entity to select it.

• Left click on the blank canvas to deselect the selected entity.

• Left click (and hold down) a selected entity to move it.

• Release left click to finish movement of an entity.

• Ctrl+left click on an entity to start the creation of an edge.

• Left click on an entity while creating an edge to draw an edge to this
entity.

• Left click on the blank canvas while creating an edge to cancel the
creation.

5. Comparison

In this section I will compare my implementation with the one from the
original paper. The point of this paper was never to improve the original
implementation, it was rather to create a simple implementation which mim-
icked the original. I think my result is satisfactory, the experience of using
the UI is just as smooth as the original. The only lacking functions are the
editing of states/edges and proper drawing of edges, but the drawing of edges
is not something within the scope of this paper.

6. Conclusions and future work

The main conclusion of this paper is that the original authors were right
about the minimization of accidental complexity. So much so that adding
new behaviour to the UI became a rather quick task, easily divided into
concrete steps. Finding bugs or slightly tweaking the UI was transparent.
Another well known fact about software is that it is almost always easier
to imagine what is going to happen when there is a visual representation
available.

Future work to this project in particular would probably see to the addi-
tion of functionality to edit states/edges and proper drawing of edges. For

15



future work regarding the general idea behind this paper I believe the orig-
inal authors make a nice claim, namely ”We believe HlS can be used as the
assembly language for UI behaviour modelling.”

References

[1] Beard, J., Vangheluwe, H., 2009. Modelling the reactive behaviour of
svg-based scoped user interfaces with hierarchically-linked statecharts.

[2] Brooks, F., 1987. No silver bullet: Essence and accidents of software
engineering.

[3] Denis Dube, J. B., Vangheluwe, H., 2009. Rapid development of scoped
user interfaces.

[4] Mosterman, P., Vangheluwe, H., 2004. Computer automated multi-
paradigm modeling: An introduction.

16


	Introduction
	Summary
	Introduction
	Scoped User Interfaces
	Hierarchically-linked Statecharts
	Example
	Specifying DCharts Abstract and Concrete Syntax
	Specifying Formalism-specific Behaviour Using DCharts
	Conclusion


	Implementation
	The Result
	Comparison
	Conclusions and future work

