
Modelling of NPCs
With the use of interacting statecharts

1

Overview

• Why statecharts?

• Related work

• My contribution

• Conclusion

2

Why Statecharts?

3

Turn Based Games

• Popular examples include computerized board
games like Chess and Connect-Four

• Game state does not change until a player
makes a move

• Waiting several seconds for (computer-
controlled) opponent is acceptable

• “Simple” algorithms within programming
language suffice

4

Real Time Games

• Examples : your favorite FPS or MMORPG

• Game state changes continuously

• Goal : make NPCs’ actions and reactions look
as intelligent and natural as possible

• More realism when NPC can :

- Analyze situation

- Evaluate different options

- Take into account game history

 Writing consistent, re-usable and efficient AI

code becomes very hard

5

Solution

• Specification of such advanced AI should not
be done within programming language

• Instead : higher level of abstraction using
visual modelling language

• Main focus in Game AI is to define reactions to
game events

 An Event based formalism like Statecharts

seems appropriate

6

Related work

7

Model-Based Design Of Computer-
Controlled Game Character Behavior

by Jörg Kienzle, Alexandre Denault & Hans Vangheluwe

8

The layered architure of the AI model
As described in the paper “Model-Based Design Of
Computer-Controlled Game Character Behavior” by Jörg
Kienzle, Alexandre Denault & Hans Vangheluwe

9

Architecture

• Character perceives the environment
through his sensors

• Input gets transformed by
components from the layers

• Eventually reaction by the actuators

• Communication with asynchronous
events (event flow downwards)

• Example : Detecting obstacle

 turning left to avoid collision.

10

Sensors

• Extract information from the state of
the tank (evolves continuously)

• Send events accordingly

• Example :

Sensors

11

Analyzers

• Detect significant events that can
only be calculated based on the state
of several components

• Example - To determine whether the
enemy is in range, information from
the turret and the turret radar is
needed :

Analyzers

12

Memorizers

• Pilot takes events/state from the
past also in consideration

 Memory needed

• Example – Enemy Tracker
remembers enemy position, even
when it got out of sight :

Memorizers

13

Strategic Deciders

• Deciding on a high level goal

• Strategies : Exploring, Attacking,
Repairing, Fleeing, Refueling

Strategic

14

Tactical Deciders

• Translate high level goals into low
level commands

• Each strategy should have his own
planner.

Tactical

15

Planner for the attack strategy

16

Executors

• Map the decisions to events the
actuators can understand

Executors

17

Coordinators

• Handle incorrect behaviour when the
effects of actuators are correlated

• Example : Simultaneously turning
tank and cannon

Coordinators

18

Actuators

• Execute the low level commands
such as turn left or move forward

Actuators

19

My contribution

20

Example Game : Paper Warfare

21

Modelling

• As modelling environment AToM³ is used, in
combination with the DCharts formalism and
statechart compiler of Huining Fen

 [2] AToM3, http://atom3.cs.mcgill.ca/

 [3] H. Feng, DCharts, a formalism for modeling and simulation
based design of reactive software system,
http://msdl.cs.mcgill.ca/people/tfeng/thesis/thesis.html (2004).

• User Interface with Tkinter

22

Modelling

• A component with modelled behaviour consists
out of :

- A dynamic part : The statechart

- A static part : Implements certain functionality
which can be called by the statechart

- A controller : For communication between the two
parts

• Next to the NPCs, also other elements with
modelled behaviour

• Should we model everything we can model?

23

Environment

• Field repeatedly updates all objects in game

 e.g. Bullet movement and collision detection

 Would a separate statechart for a bullet be

beneficial ?

• Pausing/resuming displays/hides a message

24

Player

• Comparable to the executor & actuator layers of the
AI -> input from the user is translated into actions

• Example – When the right arrow key is pressed the
event “keyCannonRPressed” will be generated,
resulting in the cannon turning right :

25

Non-Player Character

• Same layered approach as paper in related
work but different target game and platform

• Only interesting components will be shown
(lots of trivial and similar components)

26

Enemy Detection

• If enemy present, send “enemySighted” event
and progress to EnemySighted state

• In this state keep checking for enemies, if no
more enemies are present, send
“enemyOutOfSight” event.

27

Enemy Tracker

• Memorizer to pinpoint the enemy’s position

• Repeatedly update position of enemy

• If enemy out of sight and no waypoint left to
travel to Enemy lost, continue exploring

28

Path Finder

• Determines route using waypoints when
“newDestination” event comes in

• When point reached, checks if more points are
left. If so, a “newPoint” event is send, else a
“destinationReached” event.

29

Steering Strategy

• This executor shoots in action when a new
target point is set

• Checks where that point is located in relation
to itself and propagates events accordingly.

30

Cannon Coordinator

• Next to enforcing the desired behaviour of the
cannon, it also attempts to reset the cannon
to a zero angle difference with the tank when
the attack state is left.

31

Demo Time

32

Conclusion

33

Conclusion

• Statechart modelling = good way to obtain
structured and easy-to-understand AI

• Usefull in other cases where keeping track of
state is needed (e.g. what key is pressed /
pausing game)

• Degrades performance Structure,

Consistency & Re-usability vs. Performance

• (Tkinter is not well suited for games)

34

Thank you for listening
Any questions?

