
Reusable Aspect Models in practice using TouchRAM

Joeri Exelmansa

aUniversity of Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium

Abstract

This paper starts as a summary of 2 papers written on the theory of Reusable
Aspect Models. The authors of these papers have also developed a tool called
TouchRAM. I will use this tool to model a minimalistic role-playing game. I
will use my newly acquired experience to asses whether RAM and TouchRAM
make it possible to create reusable software packages, to keep consistency among
them and to provide overall scalability.

Keywords: Reusable Aspect Models, TouchRAM, Aspect-oriented Modeling

1. Introduction

Reusable Aspect Models are a proposed way of dealing with the consistency
and scalability issues that came with existing multi-view modeling techniques.
Aspect-oriented techniques have the potential to tackle these weaknesses, as
they

• let the developer reason about each concern individually (Scalability), and

• allow for a clear composition of concerns (Consistency). Concern interac-
tions as well as conflicts are explicitly modeled.

Existing Aspect-oriented modeling techniques operated only within a single
modeling notation.

Section 2 gives a summary of what RAM is and what it is supposed to de-
liver. Section 3 introduces TouchRAM, a tool made by the original authors who
proposed RAM. Section 4 is a detailed description of a system I developed with
TouchRAM. Section 5 is about some ideas I’ve gathered from my experiences.
Section 6 contains thoughts about future work.

2. What is RAM?

The Reusable Aspect Models (RAM) approach described in ORIGINAL PA-
PER

1. Integrates different formalism techniques into 1 coherent approach

2. Packages aspect models

Preprint submitted to Elsevier January 30, 2013

3. Supports aspect dependency chains

4. Checks consistency

5. Defines weaving algorithm.

2.1. A RAM package

The basic unit of a module in RAM is called a package. A package defines
a certain amount of functionality. A package consists of:

Structural View Formalism: UML Class Diagram. In the structural view,
one or more classes are defined. Classes contain a number of methods,
attributes and associations which are only relevant to the concern of the
package. A class can incomplete, i.e. it does not contain enough function-
ality to be instantiated already. Incomplete classes are preceded by the
character | in their name.

State View Formalism: State Charts. For every class which has public meth-
ods, a state view must be present. Defines a usage protocol. In case it
describes an incomplete class, the state view has a pointcut and an advice
section, in order to extend the state view of another package instantiating
the incomplete class (see later).

Message View Formalism: UML Sequence Diagram. At most 1 message view
per public method in structural view. Describes interactions between
classes in structural view. Always in the form of pointcut (typically a
call to the public method) + advice (what to do when called).

2.2. Dependencies and Reuse

Several concepts:

Mandatory Instantiation Parameters Incomplete classes that have their
name starting with a | character, supplemented with incomplete meth-
ods, incomplete states and incomplete objects make up the mandatory
instantiation parameters of the package.

Instantiation When a package A depends on a package B, it has to instantiate
all of B’s mandatory instantiation parameters. This means A must pro-
vide a mapping from those parameters to either complete or incomplete
elements in A. This has the semantics of B supplying extra functionality
to (elements of) A. This can be in the form of extra methods, attributes
and associations in the state view, states and transitions in the state view,
and message sequences in the message view.

Binding If A depends on B, it can also map complete elements of B to elements
in A. This results in elements from A’s views being merged with mapped
elements from B’s views.

2

2.3. Weaving algorithm

Dependencies of many RAM packages form a directed acyclic graph (DAG).
The weaving of a node A in such a graph with the packages it depends on
is also called creating an independent model of A. An independent model is
one from which no arrows depart. To create an independent model of A, we
first create independent models of all the packages A depends on (recursively).
Then, finally, for each node B on which A depends, A is woven with B, i.e.
pair-wise. The order in which a node is woven with its dependencies usually
doesn’t matter.[3]

2.4. Consistency checks

When weaving a pair of models, there are 3 levels of checks:

1st level Checks consistency within individual aspect models. State view checks:
All methods must be present, all fields in state view must be declared in
structural view, ... Message view: For each public method in state view,
max. 1 message view. Checks whether message view behaves according
to state view protocol.

2nd level Checks consistency between pair of models. Checks if binding rules
and instantiations are compatible. Checks if all mandatory instantiation
parameters are supplied.

3rd level Checks level-1 consistency again, but this time in the new model that
resulted from the weaving.

3. TouchRAM

TouchRAM provides an environment where the user can model RAM pack-
ages. It is intended to be suitable for use on many platforms. Its interface
is promoted as being able to get a high amount of productivity out of both
(multi)touch screens and the combination of keyboard and mouse.[1] The ver-
sion used in this paper includes the following functionality[2]:

• Aspect hierarchies

• Structural view

• Simple consistency checks

Additionally, the user can have a look at the message view of packages
which already include a message view, and a weaving algorithm for this has
also been developed. However, creation and editing isn’t supported (yet). I will
thus restrain myself to the creation of RAM packages which only consist of a
structural view. Other missing features (like state view editing and weaving)
are planned for the near future[2].

3

4. Solution

4.1. System Requirements

I will model a minimalistic Role-Playing Game. It is based on the assign-
ments during the course Model Driven Engineering, but the requirements have
been relaxed a bit1. They are as follows:

• A Game consists of a number of connected Tiles, 1 Hero and 1 or more
Villains.

• A Tile either contains the Hero, a Villain, or nothing.

• A Game is turn-based. The Hero and Villains get to play their turn in a
fixed order (Hero first, then the Villains), round-robin.

• During their turn, the Hero and Villains can either move to a tile next to
their current tile, or, if possible, attack a Villain/the Hero respectively.
They do this randomly.

• A Game ends if the Hero is dead (game lost). or if he has killed all the
Villains (game won).

4.2. Overview

The packages that make up a complete system can always be classified in
one of the following categories:

1. Application-specific. Non-reusable.

2. Domain-specific. Reusable in other applications that operate in the same
domain.

3. Domain-independent. Highly reusable.

This solution consists of 10 RAM packages. Figure 1 shows the dependencies
of all packages in the solution, with these 3 categories marked.

In [3], the authors explain their solution bottom-up, i.e. they start with
the lowest-level packages, and as they progress, they talk about higher-level
packages that depend on the ones previously explained. This was an excellent
way to introduce the reader to the concepts of RAM, as the low-level packages
are usually very small and simple.

In this paper, a different strategy will be used: The packages on the domain-
specific level will first be described, staying as high-level as possible, and going
down to deeper levels if dependency chains are encountered. This order is more
consistent with the order in which the different packages where created2. Finally,
the 2 application-specific packages will be discussed.

1Scenes, doors, keys, traps, obstacles and goals have been removed.
2This is because in the RAM way of doing things, we start with the full requirements and

keep splitting reusable functionality off into different packages, see Section 5.3.

4

Figure 1: Package dependencies

4.2.1. TurnBasedGame

If we try to reason about the most high-level, yet application-independent
functionality that RPGame relies upon, there are probably a number of pos-
sibilities. I chose to create an aspect model which represents the concept of a
turn-based game. What are the properties of a turn-based game?

• There has to be some mechanism that determines which player should
have his turn

• During his turn, the player generates a set of actions he can perform

• For each set of generated actions (= each turn), some mechanism has to
pick one action

• That action is then executed by the player

• Finally, there has to be a condition for the game to end.

This results in the RAM package seen in Figure 2. Note that the mandatory
instantiation parameters start with a | character.

While designing this package, I had an association between |TurnSelector and
|Player in mind, i.e. |TurnSelector keeps a list of |Players. However, that would
lock our implementation into a turn-based game where the order of the turns
must be represented by a list. This is indeed what we want for RPGame, but
it would make the TurnBasedGame package less reusable. Such an association
would also be completely useless in the context of this package: as long as we
don’t implement |nextTurn(), we don’t require that association to exist. It is

5

Figure 2: Structural view of the TurnBasedGame package.

good RAM design to only specify the elements (classes, methods, attributes,
associations, ...) which are relevant to the provided functionality.

In this case, the provided functionality (and also the only complete element
in the package) is the run() method of |Game. Its message view is shown in
Figure 3. The game object first checks its |EndCondition. If it evaluates to
true, the game loop ends3. The game object queries |TurnSelector for a player.
|TurnSelector comes up with a player somehow and returns it to the game object.
The game object queries the player for a set of possible actions. The game
object then calls a static method in the |ChoiceMaker class to choose between
those actions. This way, we can instantiate the |TurnBasedGame package to be
interactive, random, or something completely different4. The game object finally
calls the execute() method on the player with the chosen action as argument.

Finally, one interesting fact: TurnBasedGame does not depend on any other
package. The functionality it provides is in fact so simple that it completely
stands on its own.

4.2.2. CanAttack and HasHealth

To be situated on the same layer as TurnBasedGame, the CanAttack package
introduces 2 incomplete classes: |CanAttack and |Victim. |CanAttack has a
method to attack an object of type |Victim. This is achieved by calling |Victim’s
receiveDamage() method.

It is clear that, for the “receive damage”-concept to make sense, the |Victim
class must have some awareness of its remaining health. Therefore, we make
CanAttack depend on the HasHealth package. |HasHealth is the only manda-
tory instantiation parameter. It denotes the class to be equipped with the
functionality of having health. It is thus instantiated to be |Victim.

3run() is supposed to be a loop which keeps running until verify() evaluates to true,
however, my UML sequence diagram program didn’t allow me to visualize a loop.

4It would have been even better if we had one |ChoiceMaker per player, so some players
could be interactive and others randomized.

6

Figure 3: Message view of Game.run(). Please note that this was not explicitly modeled in
TouchRAM for reasons explained in section 3. This figure is solely intended to give the reader
a better idea of what the TurnBasedGame package does.

Figure 4: State view for HasHealth.

Because HasHealth already implements the receiveDamage() method, we
also add a binding from HasHealth.receiveDamage to |Victim.receiveDamage().

4.2.3. Movable and HasPosition

Moveable defines the possibility of a class to be moved. There is no such
thing as absolute movement. An object can only move relative to another. We
need some reference, hence an empty incomplete class |Position is introduced
alongside the |Movable class.

The move() method changes the |Moveable’s position to the destination
argument.

It would be logical to model |Moveable’s position as an association from
|Moveable to |Position, labeled e.g. myPosition. But this is actually a piece
of information that could make up a RAM package itself. Indeed, Moveable
depends on a package called “HasPosition” in order to implement this function-
ality.

HasPosition also has an association in the opposite direction. This represents
the fact that a |Position keeps a set of objects that are located at it. TouchRAM

7

Figure 5: State view for CanAttack.

Figure 6: State view for Moveable.

comes with a library containing some very low-level reusable packages. One of
those, ZeroToMany, provides the functionality of a zero-to-many association by
keeping a Set object, along with some typical methods that operate on a set
(testing presence, etc). HasPosition depends on the ZeroToMany package and
instantiates it. It also binds ZeroToMany’s complete getAssociated() method to
make it public under the new name getAtPosition().

With the packages seen until now, we can instantiate a turn-based game
framework, we can provide objects with health and attack functionality, and
move them around. One crucial reusable piece of functionality remains, though:
The possibility of objects to observe their surroundings.

4.2.4. ObserveSurroundings and HasNeighbors

The package ObserveSurroundings depends on HasNeighbors and HasPosi-
tion.

HasNeighbors defines a class with a zero-to-many association with itself5.
Now, the ObserveSurroundings package instantiates the |HasNeighbors class

to be (yet another incomplete) |Position class. This means the |Position class
keeps a list of neighbor |Positions. Later on, the |Position class will be instan-
tiated to be a Tile, so that makes sense. We bind getNeighbors() to the public
(so |Actor can call it) getNeighborPositions() method.

5This could have been accomplished by making the package depend on the ZeroToMany
package mentioned in Section 4.2.3, but a potential bug in the weaving algorithm causes
TouchRAM come up with a wrongly woven model when having the mandatory instantiation
parameters |Data and |Associated instantiated as being the same class.

8

Figure 7: State view for HasPosition.

Figure 8: State view for HasNeighbors.

ObserveSurroundings also instantiates 2 parameters from HasNeighbors: |Position
becomes |Position, |HasPosition becomes |Actor. There is also a binding from
getAtPosition() to getActorsAtPosition(). Like with getNeighbors(), this is nec-
essary because |Actor will use it for its implementation of getNeighbors().

Figure 9: State view for ObserveSurroundings.

|Actor.getNeighbors() is the actual piece of functionality in this package. Its
message view can be seen in Figure 10. Clearly, the actor object first asks its
position for neighboring positions. The actor object then asks each of those
neighboring positions for the actors located at it. The results of these calls are
merged and returned.

All of the packages seen until now were application independent. We will
now focus on application-specific packages.

9

Figure 10: Message view for |Actor.getNeighbors().

4.2.5. TurnBasedGameWithRPGameCharacters

This package contains most of the application-specific functionality of RPGame.
It depends directly or indirectly on all of the previously discussed packages (see
Figure 1).

The package defines the behavior of the characters in an RPGame. More
specifically, it instantiates TurnBasedGame’s |Player class, along with that class’
generateActions() and execute() methods, as elements in the abstract (but com-
plete) Character class. Villain and Hero derive from that class and implement
Character’s abstract methods. This is a nice example of mixing Aspect Ori-
ented Modeling and O.O. to get the benefits of both paradigms. In this case we
needed O.O.’s benefit of polymorphism.

Hero and Villain both have their own implementation of generateActions(),
because that way, we will be able modify them separately if the requirements
change.

TurnBasedGame’s |Action class is also instantiated. An object of the Action
class is nothing but a container in which all the information needed to execute
the action is stored. Action has 2 subtypes: Attack and Move. Both were
already associated with the |Actor type (in this case Character). Attack is ad-
ditionally associated with a “victim” character. Move is additionally associated
with a destination position.

All other classes are redeclared as mandatory instantiation parameters.

4.2.6. RPGame

Finally, our most high-level package simply instantiates everything that
wasn’t instantiated by TurnBasedGameWithRPGameCharacters already.

|Game is instantiated as RPGame. This is simply a renaming.

|Position is instantiated as Tile. This is also simply a renaming.

10

Figure 11: State view for TurnBasedGameWithRPGameCharacters.

|TurnSelector is instantiated as RoundRobinTurnSelector. The functionality
to select characters round-robin is provided by depending on ZeroToMany-
Ordered.

|EndCondition is instantiated as RPGEndCondition. This introduces the
check whether the Hero is dead or has won the game.

|ChoiceMaker is instantiated as RandomChoiceMaker. Given an input of type
Set¡Action¿, a random element is returned.

Character is bound to the empty Character class to be able to use this type-
name in TouchRAM.

Action is bound to the empty Action class for the same reason as Character.

Figure 13 shows all packages woven together.

11

Figure 12: State view for RPGame.

5. Conclusion

5.1. Improvements

There are a couple of things that could be improved upon in the current
design.

• The TurnBasedGame package has a single instantiation parameter (a
static method) to pick from a list of actions. That makes it impossible to
have different “choice” functionality for different players. Multiplayer or
human vs. computer is impossible. It would be better to have a choice
function associated with every player.

• The |Game object in TurnBasedGame is composed of two other objects,
namely |TurnSelector and |EndCondition. After discussing all the pack-
ages and analyzing their synergies, it has become clear to me that they
could all be merged into the game object. Advantages of this approach:

– List or set of players becomes an attribute of the game object itself
(instead of |TurnSelector). That means |EndCondition can also ac-
cess this information, in order to query players for their state (e.g. if
Hero dead, then end condition evaluates to true).

– Smaller amount of classes and instantiation parameters in Turn-
BasedGame package.

12

Figure 13: State view of independent model of RPGame, generated by TouchRAM.

13

5.2. Reusability

The most impressive advantage of RAM. When developing an application
using, e.g. O.O. programming, the user is encouraged to split common behavior
into a superclass, in the hope that it would yield a reusable module. When
building a model with RAM, the act of decomposing itself is thinking about
reusability.

With O.O., multiple inheritance is often badly supported, e.g. in the case
of Java, only virtual multiple inheritance is supported. With RAM, aspect
packages are so small that the modeler is forced to make his higher-level modules
depend on many lower-level ones.

Generic programming provides some means to make a piece of code inde-
pendent of a type it operates on. RAM takes this to the next level by making
any kind of element (class/method/state/object) from a package available for
instantiation outside that package.

5.3. The “RAM intuition”

For someone who is new to RAM, the decomposing might need some prac-
tice. For instance, someone used to decomposing systems into abstraction-
specialization modules, could be tempted to write a package A which provides
an interface, and then have another package B which depends on A and imple-
ments that interface. This is absolutely wrong! There should be no such thing
as a package which only declares an interface. A package provides functionality.
An interface is not functionality.

In [3], the authors mention that the easiest way to break down a system into
RAM packages, is to start with the full requirements. The modeler then tries to
detect a reusable piece of functionality, and creates a high-level RAM package
which fulfills this functionality. Recursively, the modeler tries to find a piece of
reusable functionality in the newly created package, going deeper and deeper
until he hits a barrier at which the functionality of a package is so low-level
that he can not subdivide any further. A typical example of such a barrier is
a package which only consists of a one-way association between two incomplete
classes.

I have found this top-down technique to be extremely useful. Actually, it
felt like it was the only possible way to get the job done. I’ve tried a bottom-up
approach as well, but every time I got stuck. This novel way of thinking was
very interesting to do.

5.4. Consistency and Scalability

In [4] the authors intended to tackle the consistency and scalability issues
that came with existing multi-view modeling techniques.

Because message view editing isn’t supported yet, consistency checks in
TouchRAM don’t seem to do much. According to [1], if a check fails the weaving
ends with an error. I’ve never had such an error, so from my practical experience
I cannot assess this quality.

14

Trying to make every package as small and reusable as possible should have
a good influence on the scalability of models. The average number of classes
in my packages is 3.4. That number would be even lower if the |Game class
got merged with |TurnSelector and |EndCondition, as described in Section 5.1.
I potentially see one problem: When decomposing a very large system, the
complete requirements can maybe be overwhelming. Is it still possible to detect
reusable functionality? Further research required.

6. Future work

6.1. RAM

Some research is still needed to verify whether the RAM approach is suitable
for huge systems.

6.2. TouchRAM

The people behind TouchRAM have planned a lot of extra features for the
future.[2]

15

References

[1] W. Al Abed, V. Bonnet, M. Schöttle, O. Alam, and J. Kienzle. Touchram:
A multitouch-enabled tool for aspect-oriented software design. In submitted
to the 5th Intl. Conference on Software Language Engineering (SLE 2012).

[2] J. Kienzle. Touchram website. http://www.cs.mcgill.ca/~joerg/SEL/TouchRAM.html,
November 2012.

[3] J. Kienzle, W. Al Abed, F. Fleurey, J.M. Jézéquel, and J. Klein. Aspect-
oriented design with reusable aspect models. Transactions on aspect-oriented
software development VII, pages 272–320, 2010.

[4] J. Kienzle, W. Al Abed, and J. Klein. Aspect-oriented multi-view modeling.
In Proceedings of the 8th ACM international conference on Aspect-oriented
software development, pages 87–98. ACM, 2009.

16

	Introduction
	What is RAM?
	A RAM package
	Dependencies and Reuse
	Weaving algorithm
	Consistency checks

	TouchRAM
	Solution
	System Requirements
	Overview
	TurnBasedGame
	CanAttack and HasHealth
	Movable and HasPosition
	ObserveSurroundings and HasNeighbors
	TurnBasedGameWithRPGameCharacters
	RPGame

	Conclusion
	Improvements
	Reusability
	The ``RAM intuition''
	Consistency and Scalability

	Future work
	RAM
	TouchRAM

